- 博客(10)
- 收藏
- 关注
原创 动手学深度学习-2021-11-14
模型选择如何发现可以泛化的模型是机器学习的根本问题将模型在训练数据上拟合得比潜在分布中更加接近的现象称为过拟合,用于对抗过拟合技术成为正则化训练误差和泛化误差训练误差是指我们的模型在训练数据集熵计算得到的误差泛化误差是我们将模型应用在同样从原始样本的分布中抽取的无限多的数据样本时,我们模型误差的期望模型复杂性影响模型泛化的因素:可调整参数的数量。当可调整参数的数量(自由度)很大时,模型往往很容易过拟合参数参用的值。当权重的取之范围较大时,模型容易过拟合训练样本的数量。即使你的模
2021-11-14 20:50:44 2286
原创 动手学深度学习-2021-11-14ii
多层感知机的从零开始实现&简洁实现导入初始化模型参数数据集Fashion-MNIST中的每个图像由28×28=784个灰度像素值组成,每个图像视为784个输入特征和10个类别的简单分类数据集一个具有单隐藏层的多层感知机,包含256个隐藏单元num_inputs, num_outputs, num_hiddens = 784, 10, 256# 输入 输出 隐藏 层的参数W1 = nn.Parameter(torch.randn( num_inputs, num_hidden
2021-11-14 17:34:16 820
原创 动手学深度学习-2021-11-14
多层感知机(MLP)隐藏层线性模型对于多特征,以及特征之间相互作用的关系的预测是有可能出错的;即很多例子都并非唯一单调性,单层的线性模型时会出错的。在网络层中加入一个或多个隐藏层来克服线性模型的限制,最简单的做法是将许多全连接层堆叠在一起,每一层输出到上面的层,直到生成最后的输出输入 X∈Rn*d,n个样本的小批量,每个样本d个输入特征隐藏表示 H∈ Rn*h,每个隐藏层有h个隐藏单元隐藏层的权重表示 W(1)∈Rd*h,隐藏层偏置b(1)∈R1*h输出层权重表示 W(2)∈Rh*q,
2021-11-14 17:18:18 386
原创 动手学深度学习-2021-11-12
softmax回归的从零开始实现在前面已经引入了Fashion-MNIST数据集,并设置数据迭代器的批量大小为256引入import torchfrom IPython import display# IPython是一个python的交互式shell,支持交互式数据可视化from d2l import torch as d2lbatch_size = 256train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)初
2021-11-12 21:36:57 1004
原创 动手学深度学习-2021-11-11
图像分类数据集Fashion-MNIST数据集导入%matplotlib inlineimport torchimport torchvision # torchvision 是PyTorch中专门用来处理图像的库from torch.utils import datafrom torchvision import transformsfrom d2l import torch as d2ld2l.use_svg_display()...
2021-11-12 19:50:23 2926
原创 动手学深度学习-2021-11-10
softmax线性回归分类问题独热编码是一个向量,其分量和类别一样多。类别对应的分量设置为1,其他所有分量设置为0。例如鸡猫狗分类中,猫对应(1,0,0),狗对应(0,1,0),鸡对应(0,0,1)网络结构为了估计所有可能类别的条件概率,需要一个有多个输出的模型,每个类别对应一个输出。在学习的例子当中有4个特征和3个可能的输出类别,需要12个标量来表示权重,3个标量表示偏置 y=x1w11+x2w12+x3w13+x4w14+b1…转换成矩阵就是权重矩阵和特征矩阵相乘再加上偏置b得到
2021-11-11 10:41:20 590
原创 2021-11-08
@TOCpython-Leetcode刷题2021.11.08-1 day用python刷leetcode题目,学习python和算法。python小白,有一点点算法基础。python语法//函数的定义def 函数名([参数]): 函数体 [return 返回值]//理解类中这个函数定义def twoSum(self, nums: List[int], target: int) -> List[int]://self是一个参数,python规定类方法的定义至少包含一个参数,设se
2021-11-08 23:01:21 237
原创 机器学习笔记
什么是机器学习机器学习和现在火热的深度学习有点区别,机器学习包含深度学习,机器学习在人工智能范围里。人工智能、机器学习、深度学习关系:人工智能>>机器学习>>深度学习机器学习是很多算法的统称,不单指某种算法。通过训练集,不断识别特征,不断建模,最后形成有效的模型,这个过程叫"机器学习"从大的范围理解机器学习就是将现实问题抽象为数学问题,机器解决数学问题从而解决现实问题。传统的软件是人为地设定条件,告诉计算机符合这个条件后应该做什么(if A then B)机器学习
2021-01-21 16:58:56 435
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人