动手学深度学习-2021-11-14ii

多层感知机的从零开始实现&简洁实现

导入

初始化模型参数

  • 数据集Fashion-MNIST中的每个图像由28×28=784个灰度像素值组成,每个图像视为784个输入特征和10个类别的简单分类数据集
  • 一个具有单隐藏层的多层感知机,包含256个隐藏单元
num_inputs, num_outputs, num_hiddens = 784, 10, 256
# 输入 输出 隐藏 层的参数
W1 = nn.Parameter(torch.randn(
    num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
    num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]

激活函数

  • 这里使用了最大值函数实现ReLU函数
def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

模型

  • 忽略空间结构,使用reshape将每一个二维图像转换成一个长度为num_inputs的向量
def net(X):
    X = X.reshape((-1, num_inputs))
    # 参数-1的意思 :
    #新数组的shape属性应该要与原来数组的一致,即新数组元素数量与原数组元素数量要相等。
    #一个参数为-1时,那么reshape函数会根据另一个参数的维度计算出数组的另外一个shape属性值。
    H = relu(X@W1 + b1)  # 这里“@”代表矩阵乘法
    return (H@W2 + b2)
  • 简洁实现,2个全连接层
net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);

训练

num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
d2l.predict_ch3(net, test_iter)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值