安居客python二手房数据预处理

题记:

 继上篇对安居客二手房数据进行爬取之后,接下来是对安居客进行数据预处理。

 一:

 观察上述数据可以发现爬取的数据比较杂乱无章,这时需要我们对数据进行处理,比如把一些无效数据清除掉,还有一些机器无法识别的数据,方便后期运用集群对数据进行获取与观察。

清洗的数据包括:房屋编号,元/㎡,月供,房产等

二:
1.

对数据进行处理需要用到以下函数:

import shutil

import pandas as pd
import re
import os

尤其是pandas函数,可以帮助我们很方便的对数据进行处理(pandas 是基于NumPy 的一种工具,该工具是为解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法)

2.

接下来具体对数据进行处理

(1)先获取处理前的文件

需要用到shutil函数对文件进行移动。对文件进行了一个获取

代码如下

#移动文件
def dealData():
    if os.path.exists("./安居客_处理前.txt"):
        os.remove("./安居客_处理前.txt")
    if os.path.exists("./安居客_处理后.txt"):
        os.remove("./安居客_处理后.txt")

    srcfile = "../数据采集/安居客.txt"
    dstfile = "./安居客_处理前.txt"
    shutil.copy(srcfile, dstfile)  # 移动文件
    print("移动文件 %s -> %s" % (srcfile, dstfile))

    transformData()

(2)打开文件后这时需要用到上面所提到pandas函数,通过对上述数据的观察,可以发现每列数据的开头都有房屋编号,这时我们可以看成一个列函数,用columns对数据进行一个排序,对每一个数据赋一个元素,方便我们接下来对数据进行处理。

代码如下:

 data.columns = ['编号', '区县', '片区', '小区名称', '房屋单价', '房屋总价',
                    '户型', '楼层', '面积', '朝向', '装修',
                    '建设时间','房屋属性','用途','产权','产权时间',
                    '唯一住房', '房贷','中介公司','挂牌时间']
    print(data.head())

(3)

data = data[data['编号'].str.contains('房屋编码')]

把房屋编号替换成编号,这时就可以对数据进行处理了。(同时把无效数据进行处理掉)

处理方法有三种等

data["编号"] = data.apply(lambda x: formatHouseNumber(x), axis=1)
'''
格式化房屋编号
'''
def formatHouseNumber(colunm):
    return colunm["编号"].replace("房屋编码:","")

用函数方法对数据进行处理,把“房屋编号”替换成编号

data["房屋单价"] = data.apply(lambda x: x["房屋单价"].replace("元/㎡", ""), axis=1)

直接在data中进行直接处理,对房屋单价进行处理

'''
首付
'''
def formatHouseFirstPay(colunm):
    partten = "首付(\d+)万.+月供(\d+.\d+)元"
    return int(re.search(partten,colunm["房贷"]).group(1)) * 10000

用re正则表达式获取相应的数据

其他的数据处理方法诸如此类

(4)

1.需要注意的是

    data["楼层位置"] = data.apply(lambda x: x["楼层"].split("(")[0], axis=1)
    data["楼层数"] = data.apply(lambda x: re.search("\d+",x["楼层"]).group(), axis=1)
    data.drop(['楼层'], axis=1, inplace=True) #楼层数据处理完,不再需要

对楼层进行处理时,需要楼层位置和楼层数,把楼层进行了两部分的拆分,所以最后我们要把楼层删除掉(房贷处理也是如此)

2.需要注意的是,数据在pandas中数据类型为float型,要用数据类型处理时需要判断是否是浮点型

'''
建设产权时间
'''
def formatHouseRightTime(colunm):
    return "未知" if type(colunm["产权时间"]) == float else colunm["产权时间"]

最后处理文档如下:

写入文件:data.to_csv("./安居客_处理后.txt", sep=";", index=False)

对安居客的数据处理就完成了

源代码如下:

import shutil

import pandas as pd
import re
import os

'''
格式化房屋编号
'''
def formatHouseNumber(colunm):
    return colunm["编号"].replace("房屋编码:","")

'''
格式化房屋总价
'''
def formatHouseTotal(colunm):
    return int(re.search("\d+",colunm["房屋总价"].replace("房屋编码:","")).group())*10000

'''
建设时间
'''
def formatHouseBuildTime(colunm):
    return re.search("\d+", colunm["建设时间"]).group() if re.search("\d+", colunm["建设时间"]) != None else "未知"

'''
建设产权
'''
def formatHouseRight(colunm):
    return re.search("\d+", colunm["产权"]).group() if re.search("\d+", colunm["产权"]) != None else "未知"

'''
建设产权时间
'''
def formatHouseRightTime(colunm):
    return "未知" if type(colunm["产权时间"]) == float else colunm["产权时间"]

'''
唯一住房
'''
def formatHouseOnly(colunm):
    return "否" if type(colunm["唯一住房"]) == float else colunm["唯一住房"]


'''
首付
'''
def formatHouseFirstPay(colunm):
    partten = "首付(\d+)万.+月供(\d+.\d+)元"
    return int(re.search(partten,colunm["房贷"]).group(1)) * 10000


'''
月供
'''
def formatHouseMonthPay(colunm):
    partten = "首付(\d+)万.+月供(\d+.\d+)元"
    return re.search(partten, colunm["房贷"]).group(2)

'''
预处理数据
'''
def transformData():
    data = pd.read_csv("./安居客_处理前.txt", header=None, sep=";", encoding="utf-8")
    #数据实例(5列换行):
    #房屋编码:1906158650072067;双流华府;中铁骑士府邸;20465.0元/㎡;185 万 ;
    #4室2厅2卫;低层(共28层);90.4㎡ ;南北;精装修;
    #2016年竣工/普通住宅            ;商品房住宅;普通住宅;70年产权;满二年;
    #是;首付55万,月供6872.91元;九业房产;2021-3-14
    data.columns = ['编号', '区县', '片区', '小区名称', '房屋单价', '房屋总价',
                    '户型', '楼层', '面积', '朝向', '装修',
                    '建设时间','房屋属性','用途','产权','产权时间',
                    '唯一住房', '房贷','中介公司','挂牌时间']
    print(data.head())

    #删除乱码对应的行,只保留包含“房屋编码”的数据
    data = data[data['编号'].str.contains('房屋编码')]

    data["编号"] = data.apply(lambda x: formatHouseNumber(x), axis=1)
    data["房屋单价"] = data.apply(lambda x: x["房屋单价"].replace("元/㎡", ""), axis=1)
    data["房屋总价"] = data.apply(lambda x: formatHouseTotal(x), axis=1)
    data["楼层位置"] = data.apply(lambda x: x["楼层"].split("(")[0], axis=1)
    data["楼层数"] = data.apply(lambda x: re.search("\d+",x["楼层"]).group(), axis=1)
    data.drop(['楼层'], axis=1, inplace=True) #楼层数据处理完,不再需要
    data["面积"] = data.apply(lambda x: x["面积"].replace("㎡ ", ""), axis=1)
    data["建设时间"] = data.apply(lambda x: formatHouseBuildTime(x), axis=1)
    data["产权"] = data.apply(lambda x: formatHouseRight(x), axis=1)
    data["产权时间"] = data.apply(lambda x: formatHouseRightTime(x), axis=1)
    data["唯一住房"] = data.apply(lambda x: formatHouseOnly(x), axis=1)
    data["首付"] = data.apply(lambda x: formatHouseFirstPay(x), axis=1)
    data["月供"] = data.apply(lambda x: formatHouseMonthPay(x), axis=1)
    data.drop(['房贷'], axis=1, inplace=True)  # 房贷数据处理完,不再需要

    data.to_csv("./安居客_处理后.txt", sep=";", index=False)
    #data.to_csv("./安居客_处理前.txt",sep=";", columns=["编号","小区名称","房屋单价","房屋总价","户型","面积","房贷"],index=False)
    #编号;区县;片区;小区名称;房屋单价;房屋总价;户型;面积;朝向;装修;建设时间;房屋属性;用途;产权;产权时间;唯一住房;中介公司;挂牌时间;楼层位置;楼层数;首付;月供
    #可以通过header修改列的顺序


#移动文件
def dealData():
    if os.path.exists("./安居客_处理前.txt"):
        os.remove("./安居客_处理前.txt")
    if os.path.exists("./安居客_处理后.txt"):
        os.remove("./安居客_处理后.txt")

    srcfile = "../数据采集/安居客.txt"
    dstfile = "./安居客_处理前.txt"
    shutil.copy(srcfile, dstfile)  # 移动文件
    print("移动文件 %s -> %s" % (srcfile, dstfile))

    transformData()


if __name__ == "__main__":
    dealData()

### Python 二手房数据预处理示例代码 在进行二手房数据分析之前,数据预处理是非常重要的一步。这包括缺失值处理、异常值检测、特征编码以及标准化等操作。 #### 缺失值处理 对于存在缺失值的数据列,可以选择删除含有缺失值的记录或者填充合理的数值来代替这些缺失值: ```python import pandas as pd from sklearn.impute import SimpleImputer # 加载数据集 df = pd.read_csv('second_hand_housing_data.csv') # 创建SimpleImputer对象并指定策略为均值填补 imputer_mean = SimpleImputer(strategy='mean') # 对特定列应用均值填补 df[['面积', '单价']] = imputer_mean.fit_transform(df[['面积', '单价']]) # 或者使用其他方法如众数填补字符串类型的字段 imputer_most_frequent = SimpleImputer(strategy="most_frequent") df[['装修情况']] = imputer_most_frequent.fit_transform(df[['装修情况']]) ``` #### 异常值检测与清理 利用箱形图原理识别并移除可能存在的极端异常点: ```python def remove_outliers_iqr(dataframe, column_name): Q1 = dataframe[column_name].quantile(0.25) Q3 = dataframe[column_name].quantile(0.75) IQR = Q3 - Q1 lower_bound = Q1 - 1.5 * IQR upper_bound = Q3 + 1.5 * IQR filtered_df = dataframe[(dataframe[column_name] >= lower_bound) & (dataframe[column_name] <= upper_bound)] return filtered_df # 应用于'总价'这一栏位去除异常值 cleaned_df = remove_outliers_iqr(df, '总价') ``` #### 特征编码 当某些属性是非数值型的时候(比如房屋朝向),可以通过one-hot encoding等方式将其转换成机器学习算法能够理解的形式: ```python encoded_features = pd.get_dummies(cleaned_df['朝向'], prefix='orientation') final_df = pd.concat([cleaned_df.drop(columns=['朝向']), encoded_features], axis=1) ``` #### 数据标准化/归一化 为了让不同的特征具有相同的尺度范围,通常会对连续变量执行标准化或归一化的变换: ```python from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_columns = scaler.fit_transform(final_df[['面积', '单价']]) final_df[['area_scaled', 'price_per_square_meter_scaled']] = scaled_columns ``` 完成上述步骤之后,就可以得到一份经过良好清洗和准备好的二手房产交易数据表单了[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值