【模版】快速幂 / 矩阵快速幂


快速幂


原理:
x y x^y xy中的 y y y 转化成二进制数,然后每一个 1 1 1 对应 x x x i i i 次方

这样把 x y x^y xy转化成了 x y x^y xy = x a x^a xa * x b x^b xb * x c x^c xc
通过对 x x x 不断翻倍的过程,来匹配y转成二进制的 1 1 1
如果为 1 1 1 ,则记录的答案就会乘 x x x 的 相应次方。

p p p 为模数

例题:
luogu P1226 快速幂[模版]
luogu P2817 宋荣子的城堡
luogu P3197 越狱

int pow(int x, int y)
{
	int ans = 1;
	while(y)
	{
		if(y&1)	ans = ans*x%p;
		x = x*x%p;
		y >>= 1;
	}
	return ans;
}

矩阵快速幂


矩阵相乘的条件:
矩阵 A A A n n n m m m 列, 矩阵 B B B m m m p p p 列 。
矩阵 C = A ∗ B C = A * B C=AB ,矩阵 C C C n n n p p p 列。
n 、 m 、 p n、m、p nmp 要满足上述限制。


把矩阵当成一个元素,重复上边的普通的快速幂就好了。
注意:用结构体代表矩阵,二维数组来存储数字,重载结构体的 ∗ * 运算。


#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <ctime>
#include <queue>
#include <set>
using namespace std;
long long n, k, p = 1e9+7;
struct Matrix
{
    long long s[110][110];
}a,ans;

Matrix operator * (const Matrix &x, const Matrix &y)
{
    Matrix t;
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
            t.s[i][j] = 0;
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
            for(int k = 1; k <= n; k++)
                t.s[i][j] = (t.s[i][j] + x.s[i][k] * y.s[k][j]) % p;
    return t;
}
long long read()
{
    long long rt = 0, in = 1; char ch = getchar();
    while(ch < '0' || ch > '9') {if(ch == '-') in = -1; ch = getchar();}
    while(ch >= '0' && ch <= '9') {rt = rt * 10 + ch - '0'; ch = getchar();}
    return rt * in;
}



int main()
{
    n = read(), k = read();
    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j <= n; j++)
            a.s[i][j] = read();
        ans.s[i][i] = 1;
    }
    while(k)
    {   
        if(k & 1)   ans = ans * a;
        a = a * a;
        k >>= 1;
    }
    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j <= n; j++)
            printf("%lld ",ans.s[i][j]);
        printf("\n");
    }
    system("pause");
    return 0;
}

例题:[模版]矩阵快速幂

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 快速幂是一种用于快速计算幂运算的算法,其基本思想是将指数进行二进制拆分,然后利用指数的二进制表示来快速计算幂运算。在计算过程中,可以利用取余运算来避免数值溢出,提高计算效率。快速幂算法的时间复杂度为O(logn)。 具体实现时,可以使用递归或循环的方式来实现快速幂算法。在递归实现中,需要注意处理指数为负数的情况。在循环实现中,需要注意处理指数为0的情况。 取余运算可以使用%运算符来实现,其含义是求两个数相除的余数。在快速幂算法中,取余运算可以避免数值溢出,提高计算效率。需要注意的是,在取余运算中,除数不能为0。 综上所述,快速幂算法和取余运算是计算幂运算时常用的算法和运算符,能够提高计算效率,避免数值溢出。 ### 回答2: 快速幂算法是一种优化指数运算的算法,通常用于对大整数进行多次乘方运算。该算法的基本思想是将指数拆分成二进制的形式,然后利用指数的二进制表示逐步计算。 具体来说,假设要计算a^b mod c的值,其中a、b、c均为正整数,那么可以先将b转换为二进制的形式,然后从右往左遍历这个二进制数,每次将当前位的值乘到结果中,同时对结果取模,然后将底数a自乘一次,且也要对结果取模。最终得到的结果就是a^b mod c的值。 例如,假设要计算3^13 mod 7的值,将13转换为二进制的形式得到1101,从右往左遍历这个二进制数,开始时结果为1,底数为3,当前位是1,那么将3乘到结果中,并对结果取模得到3,底数自乘得到9 mod 7 = 2;下一位是0,直接将底数自乘,即2*2 mod 7 = 4;再下一位是1,将底数自乘得到16 mod 7 = 2,同时将2乘入结果,结果为3×2 mod 7 = 6;最后一位是1,将底数自乘得到4 mod 7 = 4,同时将4乘入结果,结果为6×4 mod 7 = 3,因此3^13 mod 7的值为3。 快速幂算法的优点是可以快速地计算指数运算,具有较好的时间复杂度。同时,取模运算的存在可以避免产生过多的中间结果,节省了空间复杂度。然而,快速幂算法的缺点是需要将指数转换为二进制形式,这可能会增加算法的编程难度。 ### 回答3: 快速幂是一种用于求解幂运算的快速算法。在进行取余运算时,快速幂算法能够通过对结果取模,使得计算结果更为精确。在计算大数据的幂的运算时,常常可以使用快速幂的算法来进行加速运算。 快速幂的算法可以使用递归的方式实现,也可以使用循环的方式实现。递归实现的代码比较简单,但是存在栈空间过大的问题;循环实现的代码虽然有一定的难度,但是能够避免栈空间过大的问题。 在进行取余运算时,我们需要注意的是,如果运算的两个数都很大,那么我们在计算结果时需要特别小心。因为如果直接进行计算,可能会导致数据类型溢出,进而产生错误的结果。为了避免这种情况,我们可以在进行计算时,对结果进行取模处理。 在进行取模运算时,我们需要使用取模定理,也就是(a*b)%p=(a%p)*(b%p)%p。通过这种方式,可以使得计算结果更为精确,也可以避免数据类型溢出的情况发生。如果无法使用取模定理,则需要使用高精度的算法进行取余运算。 总而言之,快速幂算法是一种非常有效的幂运算算法,可以快速地计算出大数据的幂运算结果。在进行取余运算时,需要特别注意数据类型溢出的问题,在进行计算时需要特别小心。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值