【C++】 —— 笔试刷题day_18

一、压缩字符串(一)

题目解析

在这里插入图片描述

题目给定一个字符str,让我们将这个字符串进行压缩;

**压缩规则:**出现多次的字符压缩成字符+数字;例如aaa压缩成a3。如果字符值出现一次,1不用写。

算法思路

这道题总的来说就非常简单了,我们直接模拟整个过程即可。

思路:

示例双指针遍历,统计字符和字符出现的次数;

i固定一个字符,j向后遍历找与i位置相同的字符,如果相同就继续向后遍历,直到j位置与i位置的字符不相同;

j向后遍历结束,i位置字符出现的字符次数为j-i;如果j-1大于1就在结果字符串中加入出现的次数;等于1则不用加次数。

代码实现

class Solution {
public:
    string compressString(string param) {
        string ret;
        for(int i =0;i<param.size();)
        {
            int j = i+1;
            while(j<param.size() && param[j] == param[i])
                j++;
            ret+=param[i];
            if(j-i>1)
                ret+=to_string(j-i);
            i = j;
        }
        return ret;
    }
};

二、chika和蜜柑

题目解析

在这里插入图片描述

这道题说chika很喜欢吃蜜柑,每一个蜜柑有一定的甜度和酸度;

现在输入n表示蜜柑的个数,k表示chika要吃k个蜜柑;然后依次输入每个蜜柑的酸度、每个蜜柑的甜度。

chika想要甜度尽可能的大,如果存在甜度相等的情况,就让酸度尽可能小。

现在要我们求酸度和甜度(甜度尽可能大,酸度尽可能小)。

算法思路

对于这道题,是一道topK问题

不知是否对topK还有一些记忆,topK问题简单来说就是在一堆数据中寻找较大/较小k个数;

那对于我们这道题来说,我们要甜度尽可能大,那就是找甜度较大的k个数;但是,我们这道题在甜度相等的时候,要酸度尽可能小;

我们可以使用pair<int , int>类型来存储每一个蜜柑的甜度和酸度,但是我们要知道pair<int,int>的默认比较大小的方式:首先比较firstfirst大就大,first相等再看secondsecond大就大。

**但是我们这里要的比较方式是:**先比较甜度,甜度大就大;甜度相等再看酸度,酸度要尽可能小,而不是尽可能大。

那这里我们就要使用我们这里要求的比较方式,所以我们要自己实现一个可调用对象,这个可调用对象用来比较两个pair<int,int>类型的对象;

比较方式:

这里如果first不相等,就比较first;如果first相等比较second

这里我们可以排升序,也可以排降序(博主这里实现排降序的)

如果first不相等,就返回a.first > b.first;如果first相等,就比较second返回a.second < b.second

这样我们可调用对象返回的就是a是否大于b,排的就是降序。

代码实现

这里可调用对象可以写仿函数、也可以写lambda,这里就实现lambda

#include<iostream>
#include<algorithm>

using namespace std;
const int N = 2e5+10;
int n,k;
typedef pair<int,int> PII;
PII arr[N];
int main()
{
    cin>>n>>k;
    for(int i = 0;i<n;i++)
        cin>>arr[i].second;
    for(int i = 0;i<n;i++)
        cin>>arr[i].first;
    //排序
    sort(arr,arr+n,[](PII& a,PII& b){
        if(a.first!=b.first)
            return a.first>b.first;
        else
            return a.second<b.second;
    });
    long long a = 0, b = 0;
    for(int i = 0;i<k;i++)
    {
        a+=arr[i].first;
        b+=arr[i].second;
    }
    cout<<b<<' '<<a<<endl;
    return 0;
}

三、01背包

题目解析

在这里插入图片描述

OK啊,这道题是一道经典的01背包问题;题目给定一个V表示背包的体积、n表示物品的个数、vw数组,其中vw[i][0]表示第i个物品的体积、vw[i][1]表示第i个物品的重量。

最后让我们返回从i个物品中选择体积不超过V的物品的最大重量。

算法思路

对于01背包问题呢,这道题并没有那么多弯弯绕绕

对于背包问题的结题思路,就是动态规划(线性dp)。

如果没有了解过动态规划,或者没有搞清楚动态规划中它状态表示的含义和动态转移方程,那这道题还是有点难度的。

状态表示:

dp[i][j] 表示在i个物品中选择体积不超过j的物品,这些物品重量的最大值。(背包容量为j,从i个物品中选择时的最大重量)。

状态转移方程:

对于i位置的物品,我们可以选择这个位置的物品,也可以不选择这个位置的物品;

  • 如果选择i位置时dp[i][j] = dp[i-1][j-v[i]] + v[i](其中v[i]表示i位置物品的重量);
  • 如果我们没有选择i位置:dp[i][j] = dp[i-1][j]

理解了状态表示和状态转移方程,这里在填写dp表示时还要注意:

在填表时,当我们的背包容量要大于物品i的体积,这时我们可以选择该物品;(这是我们才需要考虑是否选择该物品)

如果背包容量小于物品i的体积,这时我们就不能选择该物品。(这时我们就不用考虑是否选择该位置了)

在这里插入图片描述

空间优化:

这里我们使用的是一个二维dp表,我们可以进行一下优化;

简单来说就是使用一维dp表来解决,(在遍历i时,我们就可以认为此时在枚举在i个物品中选择体积不超过j的物品;那对于某一个物品,不选择它时的最大重量就等于此时的dp[j],选择它时的最大重量就等于dp[j - v[i]] + z[i]其中z[i]表示i物品的重量)。

那这样我们dp[i] = max(dp[i] , dp[j-v[i]] + z[i])

还要注意这样我们就需要从右往左填表,否则就会覆盖掉我们的数据。

代码实现

class Solution {
public:
    int dp[1001][1001] = {0};
    int knapsack(int V, int n, vector<vector<int> >& vw) {
        // write code here
        for(int i = 1;i<=n;i++)
        {
            for(int j = 1;j<=V;j++)
            {
                if(vw[i-1][0] <= j)
                {
                    dp[i][j] = max(dp[i-1][j],dp[i-1][j-vw[i-1][0]]+vw[i-1][1]);
                }
                else {
                    dp[i][j] = dp[i-1][j];
                }
            }
        }
        return dp[n][V];
    }
};

空间优化:

class Solution {
public:
    int dp[1001] = {0};
    int knapsack(int V, int n, vector<vector<int> >& vw) {
        // write code here
        for(int i = 0;i<n;i++)
        {
            for(int j = V;j>=vw[i][0];j--)
                dp[j] = max(dp[j],dp[j-vw[i][0]] + vw[i][1]);
        }
        return dp[V];
    }
};

到这里本篇文章就结束了,继续加油

评论 45
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迟来的grown

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值