46文章解读与程序——中国电机工程学报EI\CSCD\北大核心《考虑分布式电源运行特性的有源配电网 智能软开关SOP规划方法》已提供下载资源

👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆

《《《《《《《《更多资源还请持续关注本专栏》》》》》》》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

知网论文可下载:考虑分布式电源运行特性的有源配电网 智能软开关SOP规划方法 Coordinated Control Method of Voltage and Reactive 智能软开关(soft open point,SOP)作为一种新型的配电装置,其应用将极大地提高配电系统运行的经济性、灵活性和可控性,从而解决由于大量间歇性分布式电源接入给配电网带来的问题。但考虑到投资和运行成本,SOP 的选址与定容成为一个亟待解决的问题。该文提出了一种考虑分布式电源运行特性的有源配电网SOP规划方法。首先,考虑风光等分布式电源的运行特性,根据历史数据得到其概率密度分布函数,从而采用基于Wasserstein 距离的最优场景生成技术进行典型场景构建。其次,建立了SOP选址定容问 题的双层规划模型,上层规划以年综合费用最小为目标,下层规划则以每个场景的运行费用最小为目标,并采用基于模拟退火和锥规划的混合优化算法进行求解。最后,在IEEE 33节点算例上,对所提出的双层规划模型和混合优化算法进行了分析和验证。

部分代码展示:

clear;clc;
run ieee_33_node_system.m;
run DG_Load.m
t1=clock;
%% 常量定义
delta_T=1;  N=24;%时间
S_sopi1=0.5;    S_sopj1=0.5;
S_sopi2=0.5;    S_sopj2=0.5;    %SOP容量
A_sop=0.02;     %SOP损耗
q_CB=60/1000;   C_loss=0.08;%与有功功率损耗相关的成本系数
WL = 0.833;     Wv = 0.167;
k12_0=1;

r_ij=Branch(:,4);   x_ij=Branch(:,5);  %%第四,五列
% p_Solar=zeros(33,24);p_Wind=zeros(33,24);p_Load=zeros(33,24);
% q_Solar=zeros(33,24);q_Wind=zeros(33,24);q_Load=zeros(33,24);
result=zeros(1,24);
%% 定义决策变量p_Solar
x_Iij_square=sdpvar(32,N,'full');   x_ui_square=sdpvar(33,N,'full');%线路电流 节点电压
x_pij=sdpvar(32,N,'full');      x_qij=sdpvar(32,N,'full');%线路传输有功   无功
x_p_sop1=sdpvar(2,N,'full');    x_q_sop1=sdpvar(2,N,'full');%sop1有功 无功
x_p_sop2=sdpvar(2,N,'full');    x_q_sop2=sdpvar(2,N,'full');%sop2有功 无功
x_p_sop1_loss=sdpvar(2,N,'full');   x_p_sop2_loss=sdpvar(2,N,'full');%sop1损耗 sop2损耗  
K12_t=intvar(1,N,'full');     k12_t=sdpvar(1,N,'full');%OLTC抽头选择 k12_t没用到
N_CB=intvar(1,N,'full');      Q_CB=sdpvar(1,N,'full');%CB数量 CB无功
x_AUX=sdpvar(33,N,'full');%电压偏差
x_b_OLTC=binvar(11,N,'full');  x_K121_t=intvar(1,N,'full');%抽头选择变量(只有一个是1) 
x_K122_t=intvar(1,N,'full'); %OLTC正负变化辅助变量  
x_N1_CB=intvar(1,N,'full');%CB变化辅助变量
K_t=intvar(1,N,'full');     N_t=intvar(1,N,'full');%变量没有用到
x_N2_CB=intvar(1,N,'full');   x_vc_k=sdpvar(11,N,'full');%CB变化辅助变量 oltc电压方值
x_ui_square_OLTC=sdpvar(1,N,'full');
%k12_0=sdpvar(1,1,'full');
% x_sop_L=sdpvar(2,N,'full');
%% 定义约束条件
Constraints=[];
%% SOP有功功率限制 (1) 
Constraints=[Constraints,x_p_sop1(1,:)+x_p_sop1(2,:)+x_p_sop1_loss(1,:)+...
    x_p_sop1_loss(2,:)==0];
Constraints=[Constraints,x_p_sop2(1,:)+x_p_sop2(2,:)+...
    x_p_sop2_loss(1,:)+x_p_sop2_loss(2,:)==0];
%% CBs操作限制(27、29) 33
Constraints=[Constraints,Q_CB==N_CB*q_CB];
Constraints=[Constraints,N_CB<=5];
Constraints=[Constraints,N_CB>=0];

%% 有功功率损耗(33)
f_loss1=sum(r_ij'*x_Iij_square)*delta_T;
Constraints=[Constraints,x_ui_square(1,:)==12.66^2];  %平衡节点每小时电压平方
f_loss2=sum(x_p_sop1_loss)*delta_T;
f_loss3=sum(x_p_sop2_loss)*delta_T;
 Constraints=[Constraints,x_Iij_square>=0];    
%% sop运行约束%(40,41)
    Constraints=[Constraints,0.02*sqrt(x_p_sop1(1,:).^2+x_q_sop1(1,:).^2)<=...
        x_p_sop1_loss(1,:)];
    %Constraints=[Constraints,(x_p_sop1(2,opt_num)^2+x_q_sop1(2,opt_num)^2)<=...
     %   2*(x_p_sop1_loss(2,opt_num)/(sqrt(2)*0.02))*(x_p_sop1_loss(2,opt_num)/(sqrt(2)* 0.02))];
    Constraints=[Constraints,0.02*sqrt(x_p_sop1(2,:).^2+x_q_sop1(2,:).^2)<=...
        x_p_sop1_loss(2,:)];
%     Constraints=[Constraints,x_p_sop1(1,opt_num)+x_p_sop1(2,opt_num)==0];

     Constraints=[Constraints,0.02*sqrt(x_p_sop2(1,:).^2+x_q_sop2(1,:).^2)<=...
        x_p_sop2_loss(1,:)];
     Constraints=[Constraints,0.02*sqrt(x_p_sop2(2,:).^2+x_q_sop2(2,:).^2)<=...
        x_p_sop2_loss(2,:)];
%     Constraints=[Constraints,x_p_sop2(1,opt_num)+x_p_sop2(2,opt_num)==0];   
 %% (42)
    Constraints=[Constraints,(x_p_sop1(1,:).^2+x_q_sop1(1,:).^2)<=...
        2*(S_sopi1/(sqrt(2)))*(S_sopi1/(sqrt(2)))];
        Constraints=[Constraints,(x_p_sop1(2,:).^2+x_q_sop1(2,:).^2)<=...
        2*(S_sopi1/(sqrt(2)))*(S_sopi1/(sqrt(2)))];
   % Constraints=[Constraints,(x_p_sop1(2,opt_num)^2+x_q_sop1(2,opt_num)^2)<=...
   %     2*(S_sopj1/(sqrt(2)))*(S_sopj1/(sqrt(2)))];
  %  Constraints=[Constraints,x_p_sop1(1,opt_num)+x_p_sop1(2,opt_num)==0];
    Constraints=[Constraints,(x_p_sop2(1,:).^2+x_q_sop2(1,:).^2)<=...
        2*(S_sopi2/(sqrt(2)))*(S_sopi2/(sqrt(2)))];
            Constraints=[Constraints,(x_p_sop2(2,:).^2+x_q_sop2(2,:).^2)<=...
        2*(S_sopi1/(sqrt(2)))*(S_sopi1/(sqrt(2)))];
    
%% 支路欧姆定律(36)

效果展示:

46号资源-源程序:论文可在知网下载《考虑分布式电源运行特性的有源配电网智能软开关SOP规划方法》本人博客有解读资源-CSDN文库icon-default.png?t=N7T8https://download.csdn.net/download/LIANG674027206/88913048 👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆

《《《《《《《《更多资源还请持续关注本专栏》》》》》》》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电网论文源程序

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值