GPU分布式通信技术-PCle、NVLink、NVSwitch深度解析

829594aa7b3de8b938128547356d544b.jpeg  

GPU分布式通信技术-PCle、NVLink、NVSwitch

 

大模型时代已到来,成为AI核心驱动力。然而,训练大模型却面临巨大挑战:庞大的GPU资源需求和漫长的学习过程。

要实现跨多个 GPU 的模型训练,需要使用分布式通信和 NVLink。此外,由于单个 GPU 工作线程的内存有限,并且许多大型模型的大小已经超出了单个 GPU 的范围,因此需要实现跨多个 GPU 的模型训练。

PyTorch 提供了一种数据并行方法 DataParallel,用于在单台机器上的多个 GPU 上进行模型训练。它通过将输入数据划分成多个子部分(mini-batches),并将这些子部分分配给不同的 GPU,以实现并行计算。

在探讨分布式通信与NVLink时,我们发现了一个充满魅力且持续发展的技术领域。接下来,我们将简要概述分布式通信的基本原理,并深入了解实现高效分布式通信背后的关键技术——NVLink的演进历程。

分布式通信是指将计算机系统中的多个节点连接起来,使它们能够相互通信和协作,以完成共同的任务。而NVLink则是一种高速、低延迟的通信技术,通常用于连接GPU之间或连接GPU与其他设备之间,以实现高性能计算和数据传输 。

分布式并行

深度学习已迈入大模型时代,即Foundation Models。这类模型以“大”为核心,主要包括以下几个方面:

  1. "大数据驱动,大模型依赖自监督学习。它削减了标注需求,降低了训练成本,而充足的数据又赋予了模型更强的泛化和性能。"
  2. 庞大的数据和参数需求,导致模型难以在单台机器上运行和计算。这既推动了计算硬件的持续创新,也对AI框架提出了分布式并行训练的要求。

所以说,为了解决上述问题我们需要引入分布式并行策略。

数据并行

数据并行(Data Parallel,DP)是一种常用的深度学习训练策略,它通过在多个 GPU 上分布数据来实现并行处理。在数据并行的框架下,每个 GPU(或称作工作单元)都会存储模型的完整副本,这样每个 GPU 都能独立地对其分配的数据子集进行前向和反向传播计算。这种方法可以显著提高训练速度,但需要更多的显存和更复杂的分布式通信 。

数据并行的工作流程:

  1. 梯度聚合是指在分布式训练中,计算完成后,所有工作单元的梯度需要被聚合起来。这通常通过网络通信来实现,比如使用 All-Reduce 算法,它允许在不同的 GPU 间高效地计算梯度的平均值。AllReduce算法是一种特殊的Reduce操作,它将所有节点的数据聚合到一起,并将结果广播回所有节点。
  2. 更新参数:一旦梯度被平均,每个 GPU 使用这个平均梯度来更新其模型副本的参数。
  3. 重复过程:这个过程在每个数据批次上重复进行,直到模型在整个数据集上训练完成。

数据并行的优势和挑战:

数据并行是一种强大的技术,它能让你将训练过程扩展到更多的GPU上,从而极大地加速训练。它的优势在于实施简单,同时可以根据硬件资源的变化,灵活地调整工作单元的数量。目前,多个深度学习框架都已内置了对这种技术的全面支持。

随着GPU并行数量的增加,数据并行会带来显著的内存开销,因为需要存储更多的参数副本。同时,梯度聚合步骤在GPU之间同步大量数据时可能成为系统瓶颈,尤其是工作单元数量增多的情况下。

异步同步方案在数据并行中的应用:

为了突破数据并行中的通信瓶颈,研究者们倾力打造了各种异步同步策略。其中,GPU 工作线程独当一面,各自为政地处理数据,无需等待其他线程完成梯度计算和同步。这

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科技互联人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值