本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html
这是一篇关于电力系统技术的研究论文,主题是“基于概率性序列和近似动态规划的高比例可再生能源电力系统中长期生产模拟方法”。以下是该文件的核心内容概要:
-
研究背景:随着可再生能源在电力系统中的渗透率提高,电力系统的供电和负荷随机性增加,导致中长期电力平衡难度加大,对电网安全和可靠性构成挑战。
-
研究目的:提出一种新的中长期生产模拟方法,以应对高比例可再生能源电力系统的运行挑战,确保供电安全和可再生能源的有效消纳。
-
研究方法:
- 将全年分为多个周期(如月或周),在每个周期开始前做出电力系统运行模式的决策。
- 利用概率性序列理论计算下一个周期的系统运行状态,构建马尔科夫决策过程(MDP)。
- 引入近似动态规划(ADP)来搜索不同周期的最优决策,形成电力系统的运行模式。
-
方法优势:新方法减少了对传统启发式原则和场景选择的依赖,能显著降低总成本,同时在极端情况下确保电力供应安全和可再生能源消纳。
-
研究结果:通过测试系统验证了所提方法的有效性和先进性。新方法在确保供电安全和可再生能源消纳的同时,降低了系统总成本。
-
研究细节:
- 详细描述了电力系统中长期运行的马尔科夫决策过程模型。
- 定义了可控发电资源状态变量、随机因素信息、运行方式决策变量和值函数。
- 介绍了基于概率性序列的状态转移运算方法。
- 讨论了基于ADP的求解过程,包括状态和决策选择范围的压缩以及值函数的构造和更新。
-
算例分析:使用一个测试系统来验证新方法,并与传统方法进行比较。结果表明新方法在多个生产模拟指标上表现优越。
-
结论:新方法能有效处理高比例可再生能源电力系统的中长期生产模拟问题,具有较好的可拓展性和实用性。
这份文件提供了一个针对高比例可再生能源并网问题的创新解决方案,并通过理论分析和算例验证了其有效性。
为了复现论文中提出的基于概率性序列和近似动态规划的高比例可再生能源电力系统中长期生产模拟方法,我们需要遵循以下步骤:
-
定义问题和变量:首先,我们需要定义电力系统的模型,包括可控发电资源状态变量、随机因素信息、运行方式决策变量和值函数。
-
初始化参数:初始化系统参数,包括发电资源的容量、检修情况、水库存水量、负荷预测等。
-
构建马尔科夫决策过程:根据系统状态和随机因素信息,构建马尔科夫决策过程(MDP)。
-
概率性序列计算:使用概率性序列理论计算下一个周期的系统运行状态。
-
近似动态规划(ADP):引入ADP来搜索不同周期的最优决策。
-
迭代求解:通过迭代求解过程,直到找到最优的运行方式。
-
评估结果:评估所得到的运行方式在不同场景下的表现。
以下是使用Python语言实现的仿真复现思路:
import numpy as np
from scipy.stats import norm
# 定义电力系统参数
class PowerSystem:
def __init__(self, generation_capacity, storage_capacity, load_forecast):
self.generation_capacity = generation_capacity # 发电资源容量
self.storage_capacity = storage_capacity # 水库容量
self.load_forecast = load_forecast # 负荷预测
# 初始化电力系统参数
system = PowerSystem(generation_capacity=[...], storage_capacity=[...], load_forecast=[...])
# 定义概率性序列计算函数
def probabilistic_sequence(forecast, error_distribution):
# 将连续分布离散化
discrete_distribution = np.histogram(error_distribution, bins=50, density=True)
return discrete_distribution
# 定义ADP求解函数
def adp_solve(system, mdp):
# 初始化值函数和策略
value_function = np.zeros(mdp.state_space_size)
policy = np.zeros(mdp.state_space_size, dtype=int)
# 迭代求解
for _ in range(num_iterations):
for state in mdp.state_space:
# 计算最优决策
action = argmax([mdp.reward(state, action) + discount_factor * value_function[mdp.transition(state, action)] for action in mdp.action_space])
policy[state] = action
# 更新值函数
value_function[state] = mdp.reward(state, action) + discount_factor * np.sum([mdp.transition_prob(state, action, next_state) * value_function[next_state] for next_state in mdp.next_state_space])
return policy, value_function
# 定义马尔科夫决策过程类
class MDP:
def __init__(self, state_space, action_space, transition_prob, reward):
self.state_space = state_space
self.action_space = action_space
self.transition_prob = transition_prob
self.reward = reward
# 初始化MDP
mdp = MDP(state_space=[...], action_space=[...], transition_prob=[...], reward=[...])
# 设置仿真参数
num_iterations = 1000 # 迭代次数
discount_factor = 0.9 # 折扣因子
# 运行仿真
policy, value_function = adp_solve(system, mdp)
# 评估结果
def evaluate_policy(policy, mdp):
total_cost = 0
for state in mdp.state_space:
action = policy[state]
total_cost += mdp.reward(state, action)
return total_cost
total_cost = evaluate_policy(policy, mdp)
print(f"Total cost under the optimal policy: {total_cost}")
请注意,上述代码是一个简化的示例,实际实现时需要根据具体的系统参数和模型进行调整。例如,argmax
函数需要根据实际的决策空间来实现,mdp.transition
和 mdp.reward
函数需要根据电力系统的动态特性来定义。此外,还需要实现对概率性序列的详细计算,以及对ADP算法的完整实现。
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html