本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html
核心内容概述
本文全面探讨了极端天气条件下新能源电力系统的电力电量平衡体系,分析了极端天气对新能源电力系统源-网-荷的影响,并提出了相应的优化策略和模型。以下是文章的核心内容:
-
极端天气影响分析:
- 极端天气对新能源电力系统的源(资源)、网(电网)、荷(负荷)产生显著影响,增加了系统运行的不确定性和风险。
-
数据融合与资源评估:
- 提出了极端天气下新能源资源评估的多尺度耦合模型,利用测量-关联-预测(MCP)方法,结合多源数据进行资源评估。
-
功率预测与误差评价:
- 构建了新能源有功功率的多时间尺度组合预测理论体系和预测误差矢量评价体系,为电力电量平衡提供决策支持。
-
电力与电量平衡策略:
- 分析了极端天气下电力系统电力平衡的方法和策略,探讨了电量平衡的措施和策略,并从发电侧、电网侧和负荷侧提供了保障措施。
-
优化调度框架:
- 讨论了极端天气下新能源电力系统的优化调度框架,包括预调度策略和实时调度优化。
-
安全风险评估:
- 提出了极端天气下新能源电力系统安全风险评估模型,为风险预警和紧急控制提供决策支持。
-
停电防控系统:
- 构建了极端天气下电网停电防控系统,通过多源信息融合和大数据分析技术,降低极端天气对电网的影响。
-
未来研究方向:
- 展望了未来极端天气下新能源电力系统在保障电力电量平衡方面的研究方向,包括融合模型驱动与数据驱动方法、构建预防控制系统和智能推演技术等。
文章通过深入分析极端天气对新能源电力系统的影响,并提出了一系列优化策略和模型,旨在提高新能源电力系统在极端天气条件下的安全稳定运行能力。
仿真复现思路
总述
本文旨在通过仿真模型验证极端天气下新能源电力系统电力电量平衡体系的效能。仿真过程包括数据准备、模型建立、预测、优化调度策略的实施以及结果分析。
# 导入必要的库
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
# 数据准备与预处理
def data_preprocessing(data_path):
data = pd.read_csv(data_path)
data.fillna(method='ffill', inplace=True)
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(data.drop(['Date'], axis=1))
return data_scaled
# 资源-气象-环境-电网数据融合
def integrate_data(X, y):
model = RandomForestRegressor()
model.fit(X, y)
return model
# 新能源资源评估模型建立
def renewable_energy_assessment(model, new_data):
return model.predict(new_data)
# 功率预测模型建立与实施
def power_prediction_model(X_train, y_train):
model_power_pred = LinearRegression()
model_power_pred.fit(X_train, y_train)
return model_power_pred
# 优化调度策略实施
def optimal_dispatch(power_pred, load_data):
balance = power_pred - load_data
return balance
# 安全风险评估
def safety_risk_assessment(balance):
risk = abs(balance) # 简化示例
return risk
# 主函数,整合所有步骤
def main(data_path):
# 数据准备与预处理
data_scaled = data_preprocessing(data_path)
# 资源-气象-环境-电网数据融合
X = data_scaled[:, :-1]
y = data_scaled[:, -1]
model = integrate_data(X, y)
# 新能源资源评估
new_data = np.array([[0.5, 0.6, 0.7]]) # 示例新数据
assessment_result = renewable_energy_assessment(model, new_data)
print("新能源资源评估结果:", assessment_result)
# 功率预测模型建立与实施
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model_power_pred = power_prediction_model(X_train, y_train)
# 优化调度策略实施
power_data = np.array([100, 150, 200]) # 示例电力数据
energy_data = np.array([90, 140, 180]) # 示例电量数据
results = optimal_dispatch(model_power_pred.predict(X_test), energy_data)
print("优化调度结果:", results)
# 安全风险评估
risk = safety_risk_assessment(results)
print("安全风险评估:", risk)
# 执行主函数
if __name__ == "__main__":
data_path = 'extreme_weather_data.csv'
main(data_path)
以上代码框包含了从数据准备到仿真复现的完整过程,每个函数对应文章中的一个步骤,确保了仿真模型的有效性和准确性。通过这种方式,我们可以全面评估极端天气下新能源电力系统的电力电量平衡体系。
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html