今天工作的时候碰到一个数学问题,我把它叫做四面体求角,估计这个问题有现成的解答,但是为了加深理解,我还是自己求解了一遍。话不多说,先放个图:
图中有
α
\alpha
α、
β
\beta
β、
θ
\theta
θ三个角,
α
∈
(
0
,
π
)
\alpha\in (0,\pi)
α∈(0,π)是斜面角,
β
∈
(
0
,
π
)
\beta\in (0,\pi)
β∈(0,π)是底面三角形的内角,
θ
∈
(
0
,
π
2
)
\theta\in (0,\frac{\pi}{2})
θ∈(0,2π)是竖直面直角三角形内角。知道其中两个,求另一个,这就是我所说的四面体求角的问题。不妨假设已知
α
\alpha
α角和
β
\beta
β角,求
θ
\theta
θ角。
假设顶部斜边的长度为
l
l
l并假设底部斜边的长度与顶部斜边的长度相等,即
l
2
=
l
l_2=l
l2=l,其他的四条边都用
l
l
l来表示,则有:
- h 1 = l s i n θ h_1=l\mathrm{sin}\theta h1=lsinθ
- h 2 = l c o s θ h_2=l\mathrm{cos}\theta h2=lcosθ
- h 3 2 = h 2 2 + l 2 2 − 2 h 2 l 2 c o s β ⇒ h 3 2 = ( l c o s θ ) 2 + l 2 − 2 l 2 c o s θ c o s β h_3^2=h_2^2+l_2^2-2h_2l_2\mathrm{cos}\beta\Rightarrow h_3^2=(l\mathrm{cos}\theta)^2+l^2-2l^2\mathrm{cos}\theta \mathrm{cos}\beta h32=h22+l22−2h2l2cosβ⇒h32=(lcosθ)2+l2−2l2cosθcosβ
- l 3 2 = h 1 2 + h 3 2 = ( l s i n θ ) 2 + ( l c o s θ ) 2 + l 2 − 2 l 2 c o s θ c o s β = 2 l 2 ( 1 − c o s θ c o s β ) l_3^2=h_1^2+h_3^2=(l\mathrm{sin}\theta)^2+(l\mathrm{cos}\theta)^2+l^2-2l^2\mathrm{cos}\theta \mathrm{cos}\beta=2l^2(1-\mathrm{cos}\theta\mathrm{cos}\beta) l32=h12+h32=(lsinθ)2+(lcosθ)2+l2−2l2cosθcosβ=2l2(1−cosθcosβ)
- l 3 2 = l 2 + l 2 2 − 2 l l 2 c o s α = 2 l 2 ( 1 − c o s α ) l_3^2=l^2+l_2^2-2ll_2\mathrm{cos}\alpha=2l^2(1-\mathrm{cos}\alpha) l32=l2+l22−2ll2cosα=2l2(1−cosα)
从上面的最后两个表达式可以得到:
2
l
2
(
1
−
c
o
s
θ
c
o
s
β
)
=
2
l
2
(
1
−
c
o
s
α
)
2l^2(1-\mathrm{cos}\theta\mathrm{cos}\beta)=2l^2(1-\mathrm{cos}\alpha)
2l2(1−cosθcosβ)=2l2(1−cosα)
整理之后可以得到:
c
o
s
α
=
c
o
s
θ
c
o
s
β
\mathrm{cos}\alpha=\mathrm{cos}\theta\mathrm{cos}\beta
cosα=cosθcosβ
至此,四面体求角的问题已经解决,只要把已知的两个角的值代入
c
o
s
α
=
c
o
s
θ
c
o
s
β
\mathrm{cos}\alpha=\mathrm{cos}\theta\mathrm{cos}\beta
cosα=cosθcosβ中就可以求解另一个角的值。