四面体求角

  今天工作的时候碰到一个数学问题,我把它叫做四面体求角,估计这个问题有现成的解答,但是为了加深理解,我还是自己求解了一遍。话不多说,先放个图:四面体求角
  图中有 α \alpha α β \beta β θ \theta θ三个角, α ∈ ( 0 , π ) \alpha\in (0,\pi) α(0,π)是斜面角, β ∈ ( 0 , π ) \beta\in (0,\pi) β(0,π)是底面三角形的内角, θ ∈ ( 0 , π 2 ) \theta\in (0,\frac{\pi}{2}) θ(0,2π)是竖直面直角三角形内角。知道其中两个,求另一个,这就是我所说的四面体求角的问题。不妨假设已知 α \alpha α角和 β \beta β角,求 θ \theta θ角。
  假设顶部斜边的长度为 l l l并假设底部斜边的长度与顶部斜边的长度相等,即 l 2 = l l_2=l l2=l,其他的四条边都用 l l l来表示,则有:

  1. h 1 = l s i n θ h_1=l\mathrm{sin}\theta h1=lsinθ
  2. h 2 = l c o s θ h_2=l\mathrm{cos}\theta h2=lcosθ
  3. h 3 2 = h 2 2 + l 2 2 − 2 h 2 l 2 c o s β ⇒ h 3 2 = ( l c o s θ ) 2 + l 2 − 2 l 2 c o s θ c o s β h_3^2=h_2^2+l_2^2-2h_2l_2\mathrm{cos}\beta\Rightarrow h_3^2=(l\mathrm{cos}\theta)^2+l^2-2l^2\mathrm{cos}\theta \mathrm{cos}\beta h32=h22+l222h2l2cosβh32=(lcosθ)2+l22l2cosθcosβ
  4. l 3 2 = h 1 2 + h 3 2 = ( l s i n θ ) 2 + ( l c o s θ ) 2 + l 2 − 2 l 2 c o s θ c o s β = 2 l 2 ( 1 − c o s θ c o s β ) l_3^2=h_1^2+h_3^2=(l\mathrm{sin}\theta)^2+(l\mathrm{cos}\theta)^2+l^2-2l^2\mathrm{cos}\theta \mathrm{cos}\beta=2l^2(1-\mathrm{cos}\theta\mathrm{cos}\beta) l32=h12+h32=(lsinθ)2+(lcosθ)2+l22l2cosθcosβ=2l2(1cosθcosβ)
  5. l 3 2 = l 2 + l 2 2 − 2 l l 2 c o s α = 2 l 2 ( 1 − c o s α ) l_3^2=l^2+l_2^2-2ll_2\mathrm{cos}\alpha=2l^2(1-\mathrm{cos}\alpha) l32=l2+l222ll2cosα=2l2(1cosα)

  从上面的最后两个表达式可以得到:
2 l 2 ( 1 − c o s θ c o s β ) = 2 l 2 ( 1 − c o s α ) 2l^2(1-\mathrm{cos}\theta\mathrm{cos}\beta)=2l^2(1-\mathrm{cos}\alpha) 2l2(1cosθcosβ)=2l2(1cosα)
  整理之后可以得到:
c o s α = c o s θ c o s β \mathrm{cos}\alpha=\mathrm{cos}\theta\mathrm{cos}\beta cosα=cosθcosβ
  至此,四面体求角的问题已经解决,只要把已知的两个角的值代入 c o s α = c o s θ c o s β \mathrm{cos}\alpha=\mathrm{cos}\theta\mathrm{cos}\beta cosα=cosθcosβ中就可以求解另一个角的值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值