学习笔记
KnowledgeIsMagic
在所有的投资中,唯一不会失败的,就是投资自己。
展开
-
运筹学第三章:运输问题
运输问题作为一种线性规划问题,也可以用线性规划的工具进行求解。但是会非常复杂,因为对于一个有m个生产者和n个消费者而言的产销平衡运输问题,其自变量有mn个,并且约束条件还是等式,所以还要添加一些人工变量。为了更加方便快捷的解决这类问题,前辈大神们提出了表上作业法来求解运输问题。对于表上作业法,其工作流程是非常清晰的,需要特别关注的地方并不是很多,所以我感觉也可以写成程序,让计算机使用表上作业法求解运输问题。运输问题的详细情况我已经写在我的学习笔记运筹学第三章:运输问题里了。...原创 2020-09-03 16:43:51 · 1048 阅读 · 0 评论 -
运筹学第二章:线性规划的对偶理论和灵敏度分析
如果说运筹学第一章讲解的是线性规划问题的数学解法,那么第二章就可以理解为是讲解的如何灵活地利用线性规划这个工具来解决实际问题。这一章的对偶单纯形法实际上是为灵敏度分析服务,而灵敏度分析则是为日常经济活动服务,参数线性规划则是灵敏度分析的一个子集。具体的内容可以参看我的资源...原创 2020-08-27 17:47:48 · 712 阅读 · 0 评论 -
ROS之Actionlib、Pluginlib和Nodelets
ROS的acction方式和service通信方式原创 2020-08-18 09:22:44 · 297 阅读 · 0 评论 -
运筹学第一章——线性规划及单纯形法
拖拖拉拉这么久终于把运筹学第一章复习完了,但是相比于写博客,我还是更愿意用LaTex写学习笔记。这里就只说一下概况好了。 在工作和生活当中,如果我们把一些实际问题归纳为数学问题之后,其目标函数和约束条件都是线性的,则称这样的问题为线性规划问题。线性规划问题可以化为标准型,化为标准型之后就可以用单纯形法求解,简单问题可以手动求解,复杂问题用计算机求解,有不少求解线性规划问题的工具可以使用。 线性规划问题的约束条件勾勒出的是一个超维凸集,而目标函数可以看做是一个超平面。这个超平面的法向量就是各变量的原创 2020-08-06 12:29:53 · 2485 阅读 · 0 评论 -
四面体求角
今天工作的时候碰到一个数学问题,我把它叫做四面体求角,估计这个问题有现成的解答,但是为了加深理解,我还是自己求解了一遍。话不多说,先放个图: 图中有α\alphaα、β\betaβ、θ\thetaθ三个角,α∈(0,π2)\alpha\in (0,\frac{\pi}{2})α∈(0,2π)是斜面角,β∈(0,π2)\beta\in (0,\frac{\pi}{2})β∈(0,2π)是底面直角三角形的内角,θ∈(0,π2)\theta\in (0,\frac{\pi}{2})θ∈(0,2π)是原创 2020-07-07 12:00:33 · 1488 阅读 · 0 评论 -
ROS之RVIZ
又到了水博客的时间。ROS中级教程有部分内容和初级教程是重复的,还有一部分需要多台设备才能练习,剩下的要么是没练习,要么是暂时用不到,因此就不写这些内容了。这篇笔记就写RVIZ,ROS的可视化工具。 RVIZ是官方推荐的可视化工具,可以把机器人的状态在3D场景中显示出来,方便观察,同时可以通过RVIZ来产生控制指令,传递給机器人。但它并不是仿真工具,没有物理引擎,需要留意。RVIZ和ROS节点通信是通过topic方式进行的,ROS节点向指定的topic发送信息,RVIZ订阅这些topic,就可以在R原创 2020-07-06 12:02:00 · 1192 阅读 · 0 评论 -
四元数与旋转矩阵
这篇文章本来应该是前天就写的,按计划应该是和线性规划有关的内容。但是计划赶不上变换,中间插播了四元数。四元数里面的坑还真是不少,浪费了很多时间。学完四元数之后写了一篇笔记四元数与旋转变换,有需要的可以下载来看一看。 从直观上来讲,四元数还是很好理解的。四元数包含的信息就两个:旋转轴和绕这个轴旋转的角度。比如说有个四元数q=(sinθn,cosθ)\mathbf{q}=(\mathrm{sin}\theta \mathbf{n},\mathrm{cos}\theta)q=(sinθn,cosθ),原创 2020-06-30 11:12:22 · 806 阅读 · 0 评论 -
ROS入门级教程学习笔记
本来应该昨天就写这篇笔记的,但是笔记没做完,实在没什么可写的。flag刚立下就面临破产,难!上周主要学习了ROS入门级教程并做了笔记,基本上把之前学的知识捡起来了。现在编写一些topic和service没问题了。...原创 2020-06-22 16:45:35 · 212 阅读 · 0 评论 -
立个flag,每周写一篇学习笔记,从本周开始
学习目标熟练掌握ROS系统,重拾运筹学内容,学好算法导论学习背景既要平衡工作和生活,又要玩游戏,还想学习提高,我可真是太难了。之前学习总是断断续续的,不知道这次能不能克服自己的惰性坚持下来,希望到国庆假期结束的时候可以完成学习目标。有没有也想学这些知识的朋友,加个关注相互勉励~...原创 2020-06-13 11:58:00 · 287 阅读 · 0 评论