Spark之foreach和foreachPartition的区别

一、基本使用

1、RDD分布式数据集的五大特性

1)A list of partitions(一系列的分区)

2)A function for computing each split(计算每个分片的方法)

3)A list of dependecies on other RDDs(一系列的依赖RDD)

4)Optionally, a Partitioner for key_value RDDs(e.g. to say that the RDD is hash_partitioned)(可选,对于key-valuea类型的RDD都会有一个分区器)

5)Optionally, a list of perferred locations to compute each split on (e.g. block locations for an HDFS file)(可选,最佳位置)

2、RDD的操作类型

Transformations: 转换操作,lazy型,不会触发计算

Action:触发job

Persist:缓存,也不会触发job,在第一次触发job之后才会真正进行缓存

3、RDD的计算

RDD的计算实际上我们可以分为两个大部分:

1)Driver端的计算

主要是stage划分,task的封装,task调度执行

2)Executor端的计算

真正的计算开始,默认情况下每个cpu运行一个task。一个task实际上就是一个分区,我们的方法无论是转换算子里封装的,还是action算子里封装的都是此时在一个task里面计算一个分区的数据。

下面两个例子进行讲解,针对转换类型的操作可以类比查看。

scalaRDD.foreach(each=>{
  //连接数据库
  //插入数据库
  //关闭数据库连接
})

scalaRDD.foreachPartition(partition=>{
  //此处连接上数据库
  partition.foreach(each=>
  //插入数据
  })
  //关闭数据库连接
})

二、源码相关

1、第一次封装

/**
   * Applies a function f to all elements of this RDD.
   */
  def foreach(f: T => Unit): Unit = withScope {
    val cleanF = sc.clean(f)
    sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
  }

  /**
   * Applies a function f to each partition of this RDD.
   */
  def foreachPartition(f: Iterator[T] => Unit): Unit = withScope {
    val cleanF = sc.clean(f)
    sc.runJob(this, (iter: Iterator[T]) => cleanF(iter))
  }

可以看到方法通过clean操作(清理闭包,为序列化和网络传输做准备),进行了一层匿名函数的封装,

针对foreach方法,传入了迭代器foreach(每个元素遍历执行一次函数),

而针对foreachPartition方法是迭代器被传入了方法(每个分区执行一次函数,获取迭代器后需要自行进行迭代处理,即上述第二个demo的partition.foreach)。

2、第二次封装

这次统一在

/**
 * Run a job on a given set of partitions of an RDD, but take a function of type
 * `Iterator[T] => U` instead of `(TaskContext, Iterator[T]) => U`.
 */
def runJob[T, U: ClassTag](
    rdd: RDD[T],
    func: Iterator[T] => U,
    partitions: Seq[Int]): Array[U] = {
  val cleanedFunc = clean(func)
  runJob(rdd, (ctx: TaskContext, it: Iterator[T]) => cleanedFunc(it), partitions)
}

就是讲一述进一步封装的方法,进一步按照匿名函数封装

ctx: TaskContext, it: Iterator[T]) => cleanedFunc(it)

3、执行的时候

Spark的Task类型用到的也就两个

1)ShuffleMapTask

2)ResultTask

Action算子的方法执行是在ResultTask中执行的,即ResultTask的runTask方法。

首先反序列化得到我们的方法(2步骤封装的)和RDD,然后执行。传入的是迭代器

val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
  ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
_executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime

metrics = Some(context.taskMetrics)
func(context, rdd.iterator(partition, context))

三、总结

RDD.foreach(foreachFunction)

RDD.foreachPatition(foreachPartitionFunction)

经过第二步的分析我们可以理解,展开之后实际上就是

RDD的每个分区的iterator(集合):

iterator.foreach(foreachFunction)

foreachPartitionFunction(iterator)

这就很明显了,假如Function中有数据库、网络TCP等IO链接、文件流等等的创建关闭操作,采用foreachPatition方法,针对每个分区集合进行计算,可以明显提高性能。

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值