一、基本使用
1、RDD分布式数据集的五大特性
1)A list of partitions(一系列的分区)
2)A function for computing each split(计算每个分片的方法)
3)A list of dependecies on other RDDs(一系列的依赖RDD)
4)Optionally, a Partitioner for key_value RDDs(e.g. to say that the RDD is hash_partitioned)(可选,对于key-valuea类型的RDD都会有一个分区器)
5)Optionally, a list of perferred locations to compute each split on (e.g. block locations for an HDFS file)(可选,最佳位置)
2、RDD的操作类型
Transformations: 转换操作,lazy型,不会触发计算
Action:触发job
Persist:缓存,也不会触发job,在第一次触发job之后才会真正进行缓存
3、RDD的计算
RDD的计算实际上我们可以分为两个大部分:
1)Driver端的计算
主要是stage划分,task的封装,task调度执行
2)Executor端的计算
真正的计算开始,默认情况下每个cpu运行一个task。一个task实际上就是一个分区,我们的方法无论是转换算子里封装的,还是action算子里封装的都是此时在一个task里面计算一个分区的数据。
下面两个例子进行讲解,针对转换类型的操作可以类比查看。
scalaRDD.foreach(each=>{
//连接数据库
//插入数据库
//关闭数据库连接
})
scalaRDD.foreachPartition(partition=>{
//此处连接上数据库
partition.foreach(each=>
//插入数据
})
//关闭数据库连接
})
二、源码相关
1、第一次封装
/**
* Applies a function f to all elements of this RDD.
*/
def foreach(f: T => Unit): Unit = withScope {
val cleanF = sc.clean(f)
sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}
/**
* Applies a function f to each partition of this RDD.
*/
def foreachPartition(f: Iterator[T] => Unit): Unit = withScope {
val cleanF = sc.clean(f)
sc.runJob(this, (iter: Iterator[T]) => cleanF(iter))
}
可以看到方法通过clean操作(清理闭包,为序列化和网络传输做准备),进行了一层匿名函数的封装,
针对foreach方法,传入了迭代器foreach(每个元素遍历执行一次函数),
而针对foreachPartition方法是迭代器被传入了方法(每个分区执行一次函数,获取迭代器后需要自行进行迭代处理,即上述第二个demo的partition.foreach)。
2、第二次封装
这次统一在
/**
* Run a job on a given set of partitions of an RDD, but take a function of type
* `Iterator[T] => U` instead of `(TaskContext, Iterator[T]) => U`.
*/
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: Iterator[T] => U,
partitions: Seq[Int]): Array[U] = {
val cleanedFunc = clean(func)
runJob(rdd, (ctx: TaskContext, it: Iterator[T]) => cleanedFunc(it), partitions)
}
就是讲一述进一步封装的方法,进一步按照匿名函数封装
ctx: TaskContext, it: Iterator[T]) => cleanedFunc(it)
3、执行的时候
Spark的Task类型用到的也就两个
1)ShuffleMapTask
2)ResultTask
Action算子的方法执行是在ResultTask中执行的,即ResultTask的runTask方法。
首先反序列化得到我们的方法(2步骤封装的)和RDD,然后执行。传入的是迭代器
val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
_executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
metrics = Some(context.taskMetrics)
func(context, rdd.iterator(partition, context))
三、总结
RDD.foreach(foreachFunction)
RDD.foreachPatition(foreachPartitionFunction)
经过第二步的分析我们可以理解,展开之后实际上就是
RDD的每个分区的iterator(集合):
iterator.foreach(foreachFunction)
foreachPartitionFunction(iterator)
这就很明显了,假如Function中有数据库、网络TCP等IO链接、文件流等等的创建关闭操作,采用foreachPatition方法,针对每个分区集合进行计算,可以明显提高性能。