数据结构和算法介绍
线性表-数组理论讲解
int arr[10];//中括号里的一定要用常量或者常量表达式,写开辟数组的长度
长度是10个,下标是0-9
现在,数组的0号位-6号位有放置元素,也就是说,数组的长度是10个,里面有效元素的个数是7个。
数组的特点是 内存是连续的。
数组的查找或者搜索:时间复杂度是O(n)
数组的下标访问(随机访问):
因为数组的每个元素的内存是连续的,所以我们地址可以在内存连续的方向上进行偏移,所以可以支持下标访问,不管访问哪个下标,时间复杂度都是O(1)
数组的末尾位置进行插入和删除花费的时间少(时间复杂度是O(1)),因为不涉及元素的移动
比如说有一个cur=7,记录数组中有效元素的个数,如果把它看作下标,刚好是数组末尾元素的后继位置的下标,我们要去删除一个末尾元素的话,把cur–一下,从7变成6就可以了,前面的元素也不用移动。
我们可以通过指针p的++访问当前元素的下一个元素,我们可以通过指针–访问当前元素的上一个元素,因为内存地址是连续的。
什么是线性表?
就是每一个元素都有一个前驱元素和一个后继元素
数组就满足这样1个特征
数组的优点: 如果下标访问多,就使用数组。
数组的缺点是:
比如说,我要在31元素这个位置插入元素80
31这个元素及它后面的所有元素都要依次向后挪动1个位置,才能把80插到31这个元素的位置。
从后往前,依次向后挪动1个位置。
在数组的非末尾位置插入1个元素,时间复杂度是O(n)
因为在非末尾位置插入元素,当前插入位置的元素的后边的元素越多,要进行数据移动所花费的时间就越多,就是线性时间,成正比。
在数组的非末尾位置删除元素,和上面同理。
比如说,现在要删除80这个元素,相当于要把80后面的所有元素依次前移1个位置。删除元素的位置的后面的元素的数据量越多,向前移动一个一个数据的总耗费时间就越多,和数据规模成正比的关系,所以时间复杂度是O(n)
如果是在无序的数组中搜索,要找某一个元素,只能for循环从0号位置开始,一个一个比对下去,数据量越大,算法所耗费的时间就越多,时间复杂度是O(n)
如果是在有序的数组(从小到大排序),要找某一个元素,我们就不用线性搜索,我们做二分搜索。时间复杂度是O(logn)
C++的vector容器底层的数据结构就是数组。
数组是可以扩容的。要使数组可以扩容,我们就得把数组定义在堆内存上。
数组的代码实现
对于C/C++的程序,程序运行后叫进程,进程在内存上的布局:
可用内存主要分为3个部分:
.data数据段存储的是全局变量的地方,是系统分配,系统释放的,其生命周期是整个程序的生命周期。
heap堆上的内存是我们自己可用通过C的malloc,free或者C++的new和delete来去自己开辟,自己手动释放。
stack栈上的内存,随着函数进来,分配内存,函数出右括号,释放内存,是系统来控制的。
所以,我们要想数组可以扩容,只能把数组定义在heap堆上了。
定义一个指针,指向堆上开辟的数组内存
在析构的时候没有必要去判断指针是否为空,即使指针不为空,也有可能是野指针,delete有效指针,是我们开发者自己去保证的,delete或者free空指针是可以的,相当于是一个空操作而已,不做任何操作。
扩容是在原有的基础上再定义一个新的内存,新的内存大小是原来的2倍。
1、开辟新的内存
2、把原来的数组上的数据一个一个拷贝到新的内存数组上
3、把原来的堆内存释放掉
vector在gcc下是2倍扩容,在VS2017以是1.5倍扩容
#include <iostream>
#include <stdlib.h>
#include <time.h>
#include <string.h>
using namespace std;
//数组实现
class Array
{
public:
Array(int size = 10) : mCur(0), mCap(size)//构造函数,用户没有传参数,就用初始化值10
{
mpArr = new int[mCap]();//把每一个位置初始化为int的0值
}
~Array()//析构函数
{
delete[]mpArr;
mpArr = nullptr;//放在野指针的出现
}
public:
//末尾增加元素
void push_back(int val)
{
if (mCur == mCap)//mcur指向最后一个有效元素的后继位置
{
expand(2 * mCap);//O(n)
}
mpArr[mCur++] = val;//O(1)
}
//末尾删除元素
void pop_back()
{
if (mCur == 0)
{
return;
}
mCur--;//O(1)
}
//按位置增加元素
void insert(int pos, int val)
{
if (pos < 0 || pos > mCur)
{
return;//throw "pos invalid!";
}
if (mCur == mCap)
{
expand(2 * mCap);
}
//移动元素 O(n)
for (int i = mCur - 1; i >= pos; i--)//从后向前,进行依次向后移1个位置
{
mpArr[i + 1] = mpArr[i];
}
mpArr[pos] = val;
mCur++;
}
//按位置删除元素
void erase(int pos)
{
if (pos < 0 || pos >= mCur)
{
return;
}
//O(n)
for (int i = pos + 1; i < mCur; i++)//从前向后,依次向前移动1个位置
{
mpArr[i - 1] = mpArr[i];
}
mCur--;
}
//元素查询
int find(int val)
{
for (int i = 0; i < mCur; i++)//O(n)
{
if (mpArr[i] == val)
{
return i;
}
}
return -1;
}
//打印数据
void show()const
{
for (int i = 0; i < mCur; i++)
{
cout << mpArr[i] << " ";
}
cout << endl;
}
private:
//内部数组扩容接口
void expand(int size)
{
int* p = new int[size];
memcpy(p, mpArr, sizeof(int) * mCap);//旧内存数据拷贝到新内存上
delete[]mpArr;
mpArr = p;
mCap = size;
}
private:
int* mpArr;//指向可扩容的数组内存,指针指向堆上开辟的数组内存
int mCap;//数组的容量
int mCur;//数组有效元素个数
};
int main()
{
Array arr;
srand(time(0));//系统时间种一个随机数种子
for (int i = 0; i < 10; i++)
{
arr.push_back(rand() % 100);
}
arr.show();
arr.pop_back();
arr.show();
arr.insert(0, 100);
arr.show();
arr.insert(10, 200);
arr.show();
int pos = arr.find(100);
if (pos != -1)
{
arr.erase(pos);
arr.show();
}
}