586-堆排序算法的思想和性能分析

堆排序算法的思想

如果我们要从小到大排序,实现的就是大根堆
如果我们要从大到小排序,实现的就是小根堆

我们实现的是从小到大排序:
首先,题目给我们的是一组原始的未排序的序列
我们把存在数组中的元素,在逻辑上看成1个二叉堆

在这里插入图片描述
我们要做的第一件事是:
在这里插入图片描述
第1个非叶子节点的下标:(最后一个节点的下标-1)/2
就是图中的值为8的节点
然后进行一个大根堆的调整
和它的孩子进行比较进行判断,看看要不要下沉调整
大根堆:当前节点的值要大于它的两个孩子
如果孩子的值大于当前节点,要和当前节点进行交换。
在这里插入图片描述
在这里插入图片描述
然后到值为2的元素,进行判断,看看要不要下沉调整

在这里插入图片描述
然后到值为5的元素的节点,进行判断,看看要不要下沉调整
在这里插入图片描述
调整完之后,只是个大根堆,只是把值最大的元素调整到堆顶而已,所以还不是有序的
在这里插入图片描述
现在我们要做的事情是:循环操作
把最大值和末尾的节点交换
在这里插入图片描述
现在最大的元素12是在末尾节点,即在数组的末尾位置。
然后现在打破了大根堆的性质了,从0号位置开始继续进行堆的下沉调整,但是我们在调整的时候,就不要再考虑这个值为12的末尾节点了,我们相当于是每次靠这个大根堆,把当前序列中的最大值找出来,调整到堆顶,形成大根堆,然后把这个最大值和当前序列的末尾位置的元素交换。以此类推,就可以排序了。(每一趟少处理1个元素,即少处理当前序列的末尾那个元素)
所以,我们第二趟开始,从0号位置开始下沉调整的时候,就不要考虑12这个节点了,
在这里插入图片描述
然后把当前的堆顶元素11和当前处理的序列的末尾位置元素交换
在这里插入图片描述

然后开始第三趟下沉调整,从0号位置开始下沉调整,不考虑11和12了
在这里插入图片描述
然后把堆顶元素9和当前序列的末尾位置元素2交换
在这里插入图片描述
然后开始第四趟下沉调整,从0号位置开始下沉调整,不考虑11和12和9了
就是这样,以此类推下去,最后得到的就是一个有序的序列了

堆排序算法的代码实现

#include <iostream>
using namespace std;

//堆的下沉调整
void siftDown(int arr[], int i, int size)
{
	int val = arr[i];
	while (i < size / 2)
	{
		int child = 2 * i + 1;
		if (child + 1 < size && arr[child + 1] > arr[child])
		{
			child = child + 1;
		}

		if (arr[child] > val)
		{
			arr[i] = arr[child];
			i = child;//i继续指向它的孩子,继续调整
		}
		else
		{
			break;
		}
	}
	arr[i] = val;
}

//堆排序
void HeapSort(int arr[], int size)
{
	int n = size - 1;
	//从第一个非叶子节点
	for (int i = (n - 1) / 2; i >= 0; i--)//一直向上调整到0号位置-根,整个树就是大根堆 
	{
		siftDown(arr, i, size);//下沉调整 
	}

	//把堆顶元素和末尾元素进行交换,从堆顶开始进行下沉操作 
	for (int i = n; i > 0; i--)
	{
		int tmp = arr[0];
		arr[0] = arr[i];
		arr[i] = tmp;

		siftDown(arr, 0, i);//第三个参数,参与调整的元素的个数,每一趟少处理1个元素 
	}
}

int main()
{
	int arr[10];
	srand(time(NULL));

	for (int i = 0; i < 10; i++)
	{
		arr[i] = rand() % 100 + 1;
	}

	for (int v : arr)
	{
		cout << v << " ";
	}
	cout << endl;

	HeapSort(arr, 10);

	for (int v : arr)
	{
		cout << v << " ";
	}
	cout << endl;
}

在这里插入图片描述

堆排序算法的性能分析

1、每一趟下沉调整,都是树的高度,是logn
2、每一趟结束,都是要把堆顶元素和当前序列的末尾位置元素交换。
所以就是把n个元素放到堆顶。
所以时间复杂度是O(nlogn)
堆的好处是:不管元素是有序的,还是乱序的,最好,最差,平均的时间复杂度都是O(nlogn),而且空间复杂度是O(1)

归并排序的最好,最差,平均的时间复杂度都是O(nlogn),但是空间复杂度是O(logn)

对于快速排序算法来说,排的速度很快,但是快排有最差的情况:数据已经有序(正序或者逆序),此时的时间复杂度是O(n^2)了,而且快排有空间复杂度:O(logn),递归的时候函数的栈占用的空间

堆排序是不稳定的:
在这里插入图片描述
8的兄弟节点9肯定是在前面存储的,另一个9是在后面存储的
但是在进行大根堆的调整的时候,由于8和9的父节点11小,所以这个8和9就不会向上调整了。
但是7这个节点,为父节点,值是小于它的右孩子9的,进行下沉调整,9调整上来了,
在这里插入图片描述
现在这个9变到了前面了,两个相同值的元素的相对位置发生了变化,所以是不稳定的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林林林ZEYU

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值