堆排序及其时间空间复杂度分析

本文介绍了堆排序算法的实现,包括如何建立大根堆以及排序过程。堆排序的时间复杂度为O(nlog(n)),这源于初始化建堆和交换后的循环建堆,而空间复杂度为O(1),属于原地排序。无论最好、最坏还是平均情况,堆排序的时间复杂度都保持不变,体现了其效率的稳定性。
摘要由CSDN通过智能技术生成

    /*
     * 堆排序
     * 一个建立堆的函数,一个排序的函数
     * heap初始建堆(大根堆),取得左右孩子中最大的结点,用其和根节点交换,
     * 然后以此孩子结点继续建堆
     * heapSort 堆排序,先从非叶节点到跟进行循环建堆,交换根节点和最后一个元素的位置,在循环建堆,
     * 时间复杂度:主要在于初始化建堆和后来交换后循环建堆的过程。
     * 循环n-1次,每次从根0一直到叶节点是log(n),所以O(nlog(n))
     * 初始化建堆为从非叶节点层的最右端一个结点向上循环建堆,2^(i-1)*(k-i)  (i为当前层数,k为堆高度) O(n)
     *  最好 最坏平均情况都需要循环建堆, O(nlogn)
     *  空间复杂度:堆排序为原地排序,常量级额外空间 O()
     */
  

 public static void heap(int []a,int parent,int len){
        int temp=a[parent];
        int child=2*parent+1; //获得左孩子
        while(child<len){
            if(child+1<len&&a[child+1]>a[child])
                child++;
            if(a[child]<=
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值