969-交错字符串

该博客讨论了一个关于验证字符串是否由两个其他字符串交错组成的问题,并提供了两种解决方案。第一种是使用动态规划,创建一个二维布尔数组来记录所有可能的状态,时间复杂度和空间复杂度均为O(nm)。第二种方案通过滚动数组优化了空间复杂度,将其降低到O(m),同时保持了O(nm)的时间复杂度。这两种方法都是针对字符串处理和动态规划算法的有效应用。
摘要由CSDN通过智能技术生成

题目如下

给定三个字符串 s1、s2、s3,请你帮忙验证 s3 是否是由 s1 和 s2 交错 组成的。

两个字符串 s 和 t 交错 的定义与过程如下,其中每个字符串都会被分割成若干 非空 子字符串:

s = s1 + s2 + … + sn
t = t1 + t2 + … + tm
|n - m| <= 1
交错 是 s1 + t1 + s2 + t2 + s3 + t3 + … 或者 t1 + s1 + t2 + s2 + t3 + s3 + …
注意:a + b 意味着字符串 a 和 b 连接。
在这里插入图片描述
示例1:
输入:s1 = “aabcc”, s2 = “dbbca”, s3 = “aadbbcbcac”
输出:true

示例 2:
输入:s1 = “aabcc”, s2 = “dbbca”, s3 = “aadbbbaccc”
输出:false

示例 3:
输入:s1 = “”, s2 = “”, s3 = “”
输出:true

提示:
0 <= s1.length, s2.length <= 100
0 <= s3.length <= 200
s1、s2、和 s3 都由小写英文字母组成

解题方法1

动态规划
在这里插入图片描述
在这里插入图片描述

class Solution 
{
public:
    bool isInterleave(string s1, string s2, string s3) 
    {
        auto f = vector < vector <int> >(s1.size() + 1, vector <int>(s2.size() + 1, false));

        int n = s1.size(), m = s2.size(), t = s3.size();

        if (n + m != t)
        {
            return false;
        }

        f[0][0] = true;
        for (int i = 0; i <= n; ++i)
        {
            for (int j = 0; j <= m; ++j)
            {
                int p = i + j - 1;
                if (i > 0)
                {
                    f[i][j] |= (f[i - 1][j] && s1[i - 1] == s3[p]);
                }
                if (j > 0) 
                {
                    f[i][j] |= (f[i][j - 1] && s2[j - 1] == s3[p]);
                }
            }
        }
        return f[n][m];
    }
};

不难看出这个实现的时间复杂度和空间复杂度都是 O(nm)。

使用滚动数组优化空间复杂度。 因为这里数组 ff 的第 ii 行只和第 i - 1i−1 行相关,所以我们可以用滚动数组优化这个动态规划,这样空间复杂度可以变成 O(m)。

优化方法

class Solution
{
public:
    bool isInterleave(string s1, string s2, string s3)
    {
        auto f = vector <int>(s2.size() + 1, false);

        int n = s1.size(), m = s2.size(), t = s3.size();

        if (n + m != t)
        {
            return false;
        }

        f[0] = true;
        for (int i = 0; i <= n; ++i) 
        {
            for (int j = 0; j <= m; ++j) 
            {
                int p = i + j - 1;
                if (i > 0)
                {
                    f[j] &= (s1[i - 1] == s3[p]);
                }
                if (j > 0)
                {
                    f[j] |= (f[j - 1] && s2[j - 1] == s3[p]);
                }
            }
        }
        return f[m];
    }
};

复杂度分析

时间复杂度:O(nm),两重循环的时间代价为 O(nm)。
空间复杂度:O(m),即 s 2的长度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林林林ZEYU

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值