题目如下
给定三个字符串 s1、s2、s3,请你帮忙验证 s3 是否是由 s1 和 s2 交错 组成的。
两个字符串 s 和 t 交错 的定义与过程如下,其中每个字符串都会被分割成若干 非空 子字符串:
s = s1 + s2 + … + sn
t = t1 + t2 + … + tm
|n - m| <= 1
交错 是 s1 + t1 + s2 + t2 + s3 + t3 + … 或者 t1 + s1 + t2 + s2 + t3 + s3 + …
注意:a + b 意味着字符串 a 和 b 连接。
示例1:
输入:s1 = “aabcc”, s2 = “dbbca”, s3 = “aadbbcbcac”
输出:true
示例 2:
输入:s1 = “aabcc”, s2 = “dbbca”, s3 = “aadbbbaccc”
输出:false
示例 3:
输入:s1 = “”, s2 = “”, s3 = “”
输出:true
提示:
0 <= s1.length, s2.length <= 100
0 <= s3.length <= 200
s1、s2、和 s3 都由小写英文字母组成
解题方法1
动态规划
class Solution
{
public:
bool isInterleave(string s1, string s2, string s3)
{
auto f = vector < vector <int> >(s1.size() + 1, vector <int>(s2.size() + 1, false));
int n = s1.size(), m = s2.size(), t = s3.size();
if (n + m != t)
{
return false;
}
f[0][0] = true;
for (int i = 0; i <= n; ++i)
{
for (int j = 0; j <= m; ++j)
{
int p = i + j - 1;
if (i > 0)
{
f[i][j] |= (f[i - 1][j] && s1[i - 1] == s3[p]);
}
if (j > 0)
{
f[i][j] |= (f[i][j - 1] && s2[j - 1] == s3[p]);
}
}
}
return f[n][m];
}
};
不难看出这个实现的时间复杂度和空间复杂度都是 O(nm)。
使用滚动数组优化空间复杂度。 因为这里数组 ff 的第 ii 行只和第 i - 1i−1 行相关,所以我们可以用滚动数组优化这个动态规划,这样空间复杂度可以变成 O(m)。
优化方法
class Solution
{
public:
bool isInterleave(string s1, string s2, string s3)
{
auto f = vector <int>(s2.size() + 1, false);
int n = s1.size(), m = s2.size(), t = s3.size();
if (n + m != t)
{
return false;
}
f[0] = true;
for (int i = 0; i <= n; ++i)
{
for (int j = 0; j <= m; ++j)
{
int p = i + j - 1;
if (i > 0)
{
f[j] &= (s1[i - 1] == s3[p]);
}
if (j > 0)
{
f[j] |= (f[j - 1] && s2[j - 1] == s3[p]);
}
}
}
return f[m];
}
};
复杂度分析
时间复杂度:O(nm),两重循环的时间代价为 O(nm)。
空间复杂度:O(m),即 s 2的长度。