题目如下
给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4]
输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
解题思路1
前缀和 + 二分查找
为了使用二分查找,需要额外创建一个数组sums 用于存储数组 nums 的前缀和,其中 sums[i] 表示从 nums[0] 到nums[i−1] 的元素和。得到前缀和之后,对于每个开始下标 i,可通过二分查找得到大于或等于 i 的最小下标 bound,使得 sums[bound]−sums[i−1]≥s,并更新子数组的最小长度(此时子数组的长度是bound−(i−1))。
因为这道题保证了数组中每个元素都为正,所以前缀和一定是递增的,这一点保证了二分的正确性。如果题目没有说明数组中每个元素都为正,这里就不能使用二分来查找这个位置了。
class Solution
{
public:
int minSubArrayLen(int s, vector<int>& nums)
{
int n = nums.size();
if (n == 0)
{
return 0;
}
int ans = INT_MAX;
vector<int> sums(n + 1, 0);
//为了方便计算,令 size = n + 1
//sums[0] = 0 意味着前 0 个元素的前缀和为 0
//sums[1] = A[0] 前 1 个元素的前缀和为 A[0]
//以此类推
for (int i = 1; i <= n; i++)
{
sums[i] = sums[i - 1] + nums[i - 1];
}
for (int i = 1; i <= n; i++)
{
int target = s + sums[i - 1];
auto bound = lower_bound(sums.begin(), sums.end(), target);
if (bound != sums.end())
{
ans = min(ans, static_cast<int>((bound - sums.begin()) - (i - 1)));
}
}
return ans == INT_MAX ? 0 : ans;
}
};
复杂度分析
时间复杂度:O(nlogn),其中 n 是数组的长度。需要遍历每个下标作为子数组的开始下标,遍历的时间复杂度是 O(n),对于每个开始下标,需要通过二分查找得到长度最小的子数组,二分查找得时间复杂度是 O(logn),因此总时间复杂度是 O(nlogn)。
空间复杂度:O(n),其中 n 是数组的长度。额外创建数组 sums 存储前缀和。
方法二:滑动窗口
在方法一中,每次确定子数组的开始下标,然后得到长度最小的子数组,因此时间复杂度较高。为了降低时间复杂度,可以使用滑动窗口的方法。
定义两个指针 start 和 end 分别表示子数组(滑动窗口窗口)的开始位置和结束位置,维护变量 sum 存储子数组中的元素和(即从 nums[start] 到 nums[end] 的元素和)。
初始状态下,start 和 end 都指向下标 0,sum 的值为 0。
每一轮迭代,将nums[end] 加到 sum,如果sum≥s,则更新子数组的最小长度(此时子数组的长度是 end−start+1),然后将nums[start] 从 sum 中减去并将 start 右移,直到sum<s,在此过程中同样更新子数组的最小长度。在每一轮迭代的最后,将 end 右移。
class Solution
{
public:
int minSubArrayLen(int s, vector<int>& nums)
{
int n = nums.size();
if (n == 0)
{
return 0;
}
int ans = INT_MAX;
int start = 0, end = 0;
int sum = 0;
while (end < n)
{
sum += nums[end];
while (sum >= s)
{
ans = min(ans, end - start + 1);
sum -= nums[start];
start++;
}
end++;
}
return ans == INT_MAX ? 0 : ans;
}
};
复杂度分析
时间复杂度:O(n),其中 n 是数组的长度。指针 start 和 end 最多各移动 n 次。
空间复杂度:O(1)。