题目描述
给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/2VG8Kg
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
示例1
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例2
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
提示:
- 1 <= target <= 109
- 1 <= nums.length <= 105
- 1 <= nums[i] <= 105
思路
该题中数组为正整数,又是求连续子数组,可以想到采用双指针思路。初始时,指针p1和p2指向下标0,若p1和p2之间的子数组之和小于target,则让p2向右移动直到子数组之和大于等于target。若子数组之和符合题意,则让指针p1向右移动直到子数组之和小于target,以此类推。
简单来说:这个过程就是右指针枚举,左指针贪心(或许不太准确,就是以局部最优推出全局最优)
代码
class Solution {
public int minSubArrayLen(int target, int[] nums) {
if(nums[0]>=target)return 1;
int result=Integer.MAX_VALUE;
int p1=0;
int p2=0;
int sum=0;
for(;p2<nums.length;p2++){
sum+=nums[p2];
while(sum>=target && p1<=p2){
result=Math.min(result,p2-p1+1);
sum-=nums[p1];
p1++;
}
}
return result==Integer.MAX_VALUE?0:result;
}
}