力扣题目
解题思路
java代码
力扣题目:
你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。
示例 1:
输入:nums = [2,3,2] 输出:3 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入:nums = [1,2,3,1] 输出:4 解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。 偷窃到的最高金额 = 1 + 3 = 4 。
示例 3:
输入:nums = [1,2,3] 输出:3
解题思路:
算法原理:
这道题使用动态规划的方法来解决盗窃房屋能获取的最大金额问题。
思路:
对于每个房屋,有两种选择:偷或者不偷。如果偷当前房屋,那么不能偷前一个房屋,最大金额为前前个房屋的最大金额加上当前房屋的金额;如果不偷当前房屋,最大金额就是前一个房屋的最大金额。
代码分析:
- 首先处理数组长度为 1 的特殊情况。
- 初始化
dp[0]
为第一个房屋的金额,dp[1]
为前两个房屋中金额较大的那个。 - 通过一个循环,从第三个房屋开始,计算每个位置能获取的最大金额,即当前房屋金额加上前前个房屋的最大金额和前一个房屋的最大金额中的较大值,并保存到
dp
数组中。 - 最后返回数组最后一个位置的最大金额。
时间复杂度:,其中 n
是数组的长度,只需要遍历数组一次。
空间复杂度:,用于存储 dp
数组。
java代码:
package com.example.myapplication;
public class Leetcode213 {
public static void main(String[] args) {
System.out.println(new Leetcode213().rob(new int[]{1,2,3,1}));
}
public int rob(int[] nums) {
int n = nums.length;
if (n == 1) return nums[0];
int[] dp = new int[n];
dp[0] = nums[0];
dp[1] = Math.max(nums[0], nums[1]);
for (int i = 2; i < n; i++) {
dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[n - 1];
}
}
更多详细内容同步到公众号,感谢大家的支持!
每天都会给刷算法的小伙伴推送明日一题,并且没有任何收费项