第一题:
【问题描述】 :
小明对数位中含有 2、0、1、9 的数字很感兴趣,在 1 到 40 中这样的数包 括 1、2、9、10 至 32、39 和 40,共 28 个,他们的和是 574,平方和是 14362。 注意,平方和是指将每个数分别平方后求和。
请问,在 1 到 2019 中,所有这样的数的平方和是多少?
#include <iostream>
using namespace std;
typedef long long LL;
int f(int x)
{
while(x > 0)
{
int t = x % 10;
if(t == 2 || t == 0 || t == 1 || t == 9)
return 1;
x/=10;
}
return 0;
}
int main()
{
LL ans = 0;
for(int i = 1;i <= 2019;i++)
{
if(f(i) == 1) ans += (LL)i*i;
}
printf("ans = %lld\n",ans);
return 0;
}
第二题:
【问题描述】
给定数列 1, 1, 1, 3, 5, 9, 17, …,从第 4 项开始,每项都是前 3 项的和。求 第 20190324 项的最后 4 位数字。
取模的应用实在是太巧妙了!!!我一开始还想用数组存,后来发现根本不需要,直接用变量记录就可以!!然后因为只要取后四位,对10000进行取余就可以
#include <iostream>
using namespace std;
typedef long long LL;
int main()
{
int a = 1,b = 1,c =1;
for(int i = 4;i <= 20190324;i++)
{
int temp = (a + b + c) % 10000;
a = b;
b = c;
c = temp;
}
printf("f(20190324)=%d\n",c);
return 0;
}
第三题
完全二叉树的权值
#include <iostream>
using namespace std;
typedef long long ll;
const int maxn = 100052;
ll a[maxn],s[maxn];
int n;
void dfs(int x,int dep)
{
if(x > n) return ;
s[dep] += a[x];
dfs(x * 2,dep+1);
dfs(x*2+1,dep+1);
}
int main()
{
cin >> n;
for(int i = 1;i <= n;i++)
{
cin >> a[i];
}
dfs(1,1);
int ans = 1;
for(int i = 2;i < maxn;i++)
{
if(s[ans] < s[i]) ans = i;
}
printf("%d\n",ans);
return 0;
}
第四题
修改数组:
#include <iostream>
using namespace std;
const int N = 1e6+5;
int a[N],f[N];
int getf(int x)
{
return f[x] = f[x] == x ? x:getf(f[x]);
}
int main()
{
for(int i = 1;i <= N -1;i++)
{
f[i] = i;
}
int n;
cin >> n;
for(int i = 1;i <= n;i++)
{
cin >> a[i];
int nf = getf(a[i]);
a[i] = nf;
f[a[i]] = getf(nf+1);
}
for(int i = 1;i <= n;i++)
{
cout << a[i];
if(i != n)
cout << " ";
}
return 0;
}
状态压缩DP问题
核心:先放横着的,在放竖着的