近世代数:阶,子群

本文介绍了群论中元素阶的概念,通过砖数比喻证明了有限群元素阶的性质,并探讨了子群、中心元素的概念及其性质,包括子群的构造和中心元素的特征。涉及定理、证明和实例,适合群论入门者阅读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

阶的定义:a为G中的一个元素,a^n=e则N就叫a的阶。(最小的的正整数n,如果没有就叫无限阶)

a的阶用|a|.

定理一:有限群中的每个元素都有有限阶。

证明很简单:

 周期群,无扭群,混合群:

 m必是n的倍数。用反证法。

可以这样想:把n和k分成一块一块“砖”,一块砖就是最大公因数,n/这个最大公因数就是计算n是由几块砖组成的,简称砖数。再想想:把k往上重复n的砖数遍,再把n往上重复k的砖数遍,结果二者是不是一样高?这就意味着把a^k重复乘n的砖数遍后,结果相当于是a^n的几次幂,也就整出来了。

等等,k*n/(k,n)不就是k和n的最小公倍数吗,我傻了。

这个可以直接看出来,感觉不用证。

这里是把1当成砖了,所以n的砖数就是n自己。

老道理,(m,n)=1,最小公倍数就是mn,所以只能这样。

就是在交换群里,每个元素都可以乘m次变e,阶数都是m的因数。记得任意a,b一定有x使bx=a结论吗?往里带就行。

子群:

从这个定义可以看出来,只要|G|(G的元素个数的意思,不是阶数,群哪来阶数)>1,至少有两个子群。首先是{e},完美符合群的定义。还有G自己也是子群。(注意子群的代数运算是一样的 )

这两个子群称为群G的平凡子群。别的子群,如果存在的话,叫做G的非平凡子群或真子群。

大家用的是同一个运算嘛。

保证不出家门(a-1在H里可以保证e也在家里)

中心元素:

可换就是“aob=boa”的意思。

解释一下:GL(F)是一般线性群,一般线性群是指基域K上n×n 可逆矩阵全体组成的矩阵乘法群。

特殊线性群就是对应行列式等于1的。

纯量矩阵就是kE,单位矩阵的倍数。

中心:

 下面这个结论也很好看出来。

自己乘自己跳不出那个圈子,还是自己。自己逆自己也一样 

反过来推,ab属于h,a-1还属于h,那可不就成了子群了吗。

 有没有一点像证明子群?ab-1属于h的套路又来了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值