package test
import java.sql.DriverManager
import com.typesafe.config.ConfigFactory
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.ReceiverInputDStream
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* 使用SparkStreaming集成Spark Sql
*/
object Test04 {
def main(args: Array[String]): Unit = {
//关闭不想打印的日志信息
Logger.getLogger("org").setLevel(Level.WARN)
//默认去加载resouces目录下的配置文件
val config = ConfigFactory.load()
val conf = new SparkConf().setMaster("local[*]").setAppName("Test04")
//每2秒种采样一次数据
val ssc = new StreamingContext(conf,Seconds(3))
//接收数据
val words: ReceiverInputDStream[String] = ssc.socketTextStream("hadoop01",1234)
words.foreachRDD(rdd=>{
//计算当前批次结果
val current_batch_result: RDD[(String, Int)] = rdd.flatMap(_.split(" &
SparkStreaming集成Spark Sql
最新推荐文章于 2021-06-23 18:59:11 发布
本文介绍如何将SparkStreaming项目与Spark SQL进行集成,通过配置application.conf文件实现数据流处理与SQL查询的结合。
摘要由CSDN通过智能技术生成