SparkStreaming集成Spark Sql

本文介绍如何将SparkStreaming项目与Spark SQL进行集成,通过配置application.conf文件实现数据流处理与SQL查询的结合。
摘要由CSDN通过智能技术生成
package test

import java.sql.DriverManager

import com.typesafe.config.ConfigFactory
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.ReceiverInputDStream
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  * 使用SparkStreaming集成Spark Sql
  */
object Test04 {
  def main(args: Array[String]): Unit = {
    //关闭不想打印的日志信息
    Logger.getLogger("org").setLevel(Level.WARN)
    //默认去加载resouces目录下的配置文件
    val config = ConfigFactory.load()
    val conf = new SparkConf().setMaster("local[*]").setAppName("Test04")
    //每2秒种采样一次数据
    val ssc = new StreamingContext(conf,Seconds(3))
    //接收数据
    val words: ReceiverInputDStream[String] = ssc.socketTextStream("hadoop01",1234)

    words.foreachRDD(rdd=>{
      //计算当前批次结果
      val current_batch_result: RDD[(String, Int)] = rdd.flatMap(_.split(" &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值