- 博客(13)
- 资源 (5)
- 收藏
- 关注
原创 文献阅读:大规模动态优化问题求解方法(基于转移的粒子群算法的大规模变变量交互动态优化)
协同协同进化算法是利用分治机制解决大规模动态优化问题的常用算法。它们的表现取决于如何对决策变量进行分组,以及如何跟踪不断变化的最优值。然而,现有的分解方法计算量大,在动态变量交互作用下存在局限性。快速在线分解以及求解新子问题的重构仍然是一个具有挑战性的问题。提出了基于迁移的粒子群优化算法,该算法采用动态微分分组进行在线分解,并采用响应环境变化的求解迁移策略。特别是,一旦环境发生变化,动态差异分组根据变量相互作用的变化严重程度重新调整历史分组。
2023-11-28 11:10:23 967
原创 vue2+node实现全栈多人视频会议
场景:实现多人视频会议。功能:登录、注册、多人音视频(创建房间,进入房间)、会议(音频、视频、共享屏幕)。提示:以下是本篇文章正文内容,下面案例可供参考项目整体部署就行这样,但是对项目的二次开发,还是需要对源码进行解析。主要需要在src文件中进行修改。项目采用的是vue2+node+mysql的全栈操作,可以参考vue2的书和资料。
2022-11-25 11:38:22 3363 1
原创 图片的增强之-裁剪、旋转、放缩
当我们训练深度学习模型的时候,你的图片数据集可能数量太少或者是有的类别数量过少,你就可以通过对图片进行裁剪、旋转和放缩来完成图片数量的扩充。
2022-05-11 09:31:58 763
原创 Torchserve打包和部署你训练的深度学习模型
一、Torchserve介绍Torchserve是Facebooke公司开发的在线深度学习模型部署框架,它可以很方便的部署pytorch的深度学习模型,读者可以访问Github地址获取最新功能和详细说明:官方地址https://github.com/pytorch/serve/blob/master/docs/README.md。我们已经在文章Ubuntu配置Torchserve环境,并在线发布你的深度学习模型中描述了怎么一步步安装-部署深度学习模型。读者可以自行查阅。
2022-05-10 15:27:38 3043 3
原创 Ubuntu配置Torchserve环境,并在线发布你的深度学习模型
Ubuntu配置Torchserve环境,并在线发布你的深度学习模型,详细步骤,值得拥有
2022-05-09 19:36:16 3925 7
原创 4.A=LU的矩阵分解(消元法的另一种求解方式)
一.了解A=LU 其实简单的说A=LU是高斯消元法的另一种求解形式。从上一节中,我们知道高斯消元法的形式主要是EA=U。其中E我们称其为消元矩阵。通过进行变换,其中。通过上边的变换,我们可以得到A=LU。在这里L就是英文单词lower,代表着下三角;U的英文单词就是upper代表着上三角。举个例子:2X2的例子 ...
2019-12-29 14:46:25 5393 1
原创 3.矩阵乘法和逆矩阵
一、矩阵乘法的五种方法1.常规方法如上图所示,所示的常规方法就是A矩阵的第行点乘B矩阵的第列,举个简单的例子如下所示: 其中矩阵A的第一行点乘矩阵第一列:、、、。2.行方法(rows)所谓的行方法就是我们对矩阵的乘...
2019-12-20 16:29:56 3561
原创 2.矩阵消元
第二课时、矩阵的消元(Elimination)回代(back substitution)法 本课时主要讲解了矩阵的消元回代法,来求解方程组。该方法时高斯提出的,也叫做高斯消元法,主要是求解方程组的解,复杂矩阵一般不采用此方法,下面对高斯消元法进行简单的了解和学习。一.消元法(Elimination)的两种情况 (1)主元存在,可直接消元 ...
2019-12-15 20:28:34 2097
转载 P问题、NP问题、NPC问题和NP-hard详解
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。本文部份转载于https://blog.csdn.net/u012176591/article/details/51470999感谢作者博主的辛苦付出。一、p问题、NP问题、NPC问题、NP-hard问题的关系。1.首先解释一下什么是P问题,什么是NP问题,什么是NPC问题,什么是...
2019-12-13 17:14:42 1166
原创 1.方程组的几何解释
线性代数课程第一节:方程组的几何解释举例说明: 上述是一个2元一次方程组,我们主要从两个方面进行几何解释,分别是行图像和列图像。1.行图像(row picture) 所谓的行图像简单说就是以方程组的每一行来看,从上面的例子可以看出第一行是:,这在二维坐标系中是一个直线。第...
2019-12-12 18:03:16 664
原创 Sooftmax regression 的多分类python源代码
softmax regression 多分类代码导入要使用的包import numpy as np导入数据def load_data(file_name): ''' 导入数据函数 ''' returnMat=np.loadtxt(file_name) returnMat=np.mat(returnMat) feature_d...
2019-04-19 11:46:09 280
原创 对数几率回归python代码
首先我们把需要的用到的包导入进去,numpy的数据包:import numpy as np导入文本数据,通过下面函数进行数据的导入def load_data(file_name): ''' 数据导入函数 input: file-name(string)的训练数据的位置 output: feature_data(mat)特征 ...
2019-04-18 15:17:48 1691
翻译 WOA算法的伪代码
一、WOA算法的伪代码(中文伪代码,只供自娱自乐)初始化搜索的变量的初值 Xi(X1,X2,X3,X4·······);计算出每个搜索代理的目标函数值(通过for语句);X*=目前最好的搜索代理while(限制迭代次数)for 每个搜索代理更新a,A,C,l,和p的值;if1(p<0.5)if2(|A|<1)通过式子D=|C.X(t)-X(t)|和X(t+1)=X*(...
2018-10-09 15:27:28 3413
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人