线性代数课程
第一节:方程组的几何解释
举例说明:
上述是一个2元一次方程组,我们主要从两个方面进行几何解释,分别是行图像和列图像。
1.行图像(row picture)
所谓的行图像简单说就是以方程组的每一行来看,从上面的例子可以看出第一行是:,这在二维坐标系中是一个直线。第二行是,这在坐标系中也是一个直线。两个直线的交点就是方程组的解。所以从几何上来讲。行图像代表的就是两个直线的交点。我们就是求这个交点的值。
2.列图像(column picture)
要理解什么是column picture。我们需要引入矩阵的概念。我们把上述的方程组用矩阵表示如下:
从列来看,第一列是(2,-1),这在坐标系中是一个向量。第二列是向量(-1,2),如图所示:
上图引自:https://blog.csdn.net/tengweitw/article/details/39185841
从图上可以看出,两个向量分别是(-1,2)和(2,-1)。我们的目标是找到一个解x和y来求得向量(0,3)。刚好是1倍的向量1和2倍的向量2。公式如下所示:
三维向量以此类推。
总结
方程组的几何解释比较好理解,在二维下行图像就是直线的交点;三维下行图像就是平面的交点。然而列图像比较难理解,因为他是向量的形式,在二维下列图像时两个向量在某种张力下产生的新向量;在三维下同理。不用探究如此,我们只要了解方程组的本质和矩阵的本质就好。随着学习的深入,理解会更加充分。