题目链接:小L的数列 (nowcoder.com)
样例输入:
2
5
4 6 3 2 9
9
10 2 5 3 6 9 7 8 1
样例输出:
4
4
题意:需要在a数组挑选数字组成一个最长上升子序列b,并且子序列还要满足相邻两个数的最大公约数 > 1,计算子序列b的长度。
思路1:会超时,可以获得80分,n比较小的时候可以试着用。套用最长上升子序列的板子,在判断条件中加上两者的最大公约数大于1.
代码1:
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
int n, a[N], dp[N];
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
int tt; cin >> tt;
while(tt--){
cin >> n;
memset(dp, 0, sizeof(dp));
for(int i = 1; i <= n; i++) cin >> a[i];
sort(a + 1, a + n + 1);
int ans = 0;
for(int i = 1; i <= n; i++){
dp[i] = 1;
for(int j = 1; j < i; j++){
if(__gcd(a[i], a[j]) > 1) dp[i] = max(dp[i], dp[j] + 1);
}
ans = max(ans, dp[i]);
}
printf("%d\n", ans);
}
return 0;
}
思路2:动态规划。gcd(bi, bi + 1) > 1说明在b数组中,相邻的两个数需要有相同的质因子,而且这仅限于相邻的两个数,b[i]和b[i - 2]是不用有相同的质因子,例如:2 6 9。
因此我们设置dp[i][j]表示a的前i位数,质因子为j时b数组长度的最大值。每次都枚举a[i]的质因子,并将这些质因子存起来,然后将依次dp[i][质因子]更新为所有dp[i - 1][质因子]的最大值 + 1,第一维可以被优化掉。
代码2:
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e5 + 5;
int a[N], dp[N], vis[N], pri[N], cnt;
void get_prime(){
for(int i = 2; i <= N - 5; i++){
if(!vis[i]) pri[cnt++] = i;
for(int j = 0; j < cnt && i * pri[j] <= N - 5; j++){
vis[i * pri[j]] = 1;
if(i % pri[j] == 0) break;
}
}
}
int32_t main(){
ios::sync_with_stdio(false);
cin.tie(0);
int tt; cin >> tt;
get_prime();
while(tt--){
memset(dp, 0, sizeof(dp));
int n; cin >> n;
for(int i = 1; i <= n; i++) cin >> a[i];
sort(a + 1, a + 1 + n);
vector<int> v;
int ans = 0;
for(int i = 1; i <= n; i++){
int d = a[i], maxn = 0;
for(int j = 0; j < cnt && pri[j] * pri[j] <= d; j++){
if(d % pri[j] == 0){
v.push_back(pri[j]);
maxn = max(maxn, dp[pri[j]]);
}
while(d % pri[j] == 0) d /= pri[j];
}
if(d > 1){
v.push_back(d);
maxn = max(maxn, dp[d]);
}
for(int j = 0; j < v.size(); j++){
dp[v[j]] = maxn + 1;
}
ans = max(ans, maxn + 1);
v.clear();
}
printf("%lld\n", ans);
}
}