数学分析(二)-数列极限1-数列极限概念0-数列的概念10-著名数列1:斐波那契数列(黄金分割数列)【F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)】

本文介绍了斐波那契数列的定义,通过递推公式和通项公式深入探讨,展示了斐波那契数列与黄金分割的关系,并给出若干重要结论,包括前n项和公式、奇数项求和、偶数项求和及平方求和等。同时,列举了多项斐波那契数列的恒等式。
摘要由CSDN通过智能技术生成

一、定义

斐波那契数列 (Fibonacci sequence),又称黄金分割数列,因意大利数学家莱昂纳冬韭波那契 (Leonardo Fibonacci) 1202年以兔子熬殖为例子而引入,故又称为"兔子数列",指的是这样一个数列:

1 、 1 、 2 、 3 、 5 、 8 、 13 , 21 , 34 , 55 , 89 … … 1 、 1 、 2 、 3 、 5 、 8 、 13,21,34,55,89 \ldots \ldots 11235813,21,34,55,89……

这个数列从箨 3 项开始,每一项都等于前两项之和。

在数学上,斐波那契数列以如下被以递推的方法定义:

F ( 0 ) = 0 , F ( 1 ) = 1 , F ( n ) = F ( n − 1 ) + F ( n − 2 ) ( n ≥ 2 , n ∈ N ) F(0)=0, F(1)=1, F(n)=F(n-1)+F(n-2)(n \geq 2, n \in N) F(0)=0,F(1)=1,F(n)=F(n1)+F(n2)(n2,nN)

二、通项公式

1、递推公式:

在这里插入图片描述

2、通项公式:

F n = 1 5 [ ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ] F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right] Fn=5 1[(21+5 )n(215 )n]
证明一:(构造等比数列)
设常数 r r r s s s 满足:
F n − r F n − 1 = s ( F n − 1 − r F n − 2 ) F_{n}-r F_{n-1}=s\left(F_{n-1}-r F_{n-2}\right) FnrFn1=s(Fn1rFn2)
即: F n = ( s + r ) F n − 1 − s r F n − 2 F_{n}=(s+r) F_{n-1}-s r F_{n-2} Fn=(s+r)Fn1srFn2
r r r s s s 满足如下条件:
s + r = 1 s r = − 1 \begin{array}{l} s+r=1 \\ s r=-1 \end{array} s+r=1sr=1

由韦达定理知, r r r s s s 为一元二次方程 x 2 − x − 1 = 0 x^{2}-x-1=0 x2x1=0 的两个根,不妨令
r = 1 − 5 2 s = 1 + 5 2 r=\frac{1-\sqrt{5}}{2} \quad s=\frac{1+\sqrt{5}}{2} r=215 s=21+5
n ≥ 3 n \geq 3 n3 时,有
F n − r F n − 1 F n − 1 − r F n − 2 = s \frac{F_{n}-r F_{n-1}}{F_{n-1}-r F_{n-2}}=s Fn1rFn2FnrFn1=s

F 3 − r F 2 F 2 − r F 1 = s F 4 − r F 3 F 3 − r F 2 = s ⋮ F n − r F n − 1 F n − 1 − r F n − 2 = s \begin{array}{c} \frac{F_{3}-r F_{2}}{F_{2}-r F_{1}}=s \\ \frac{F_{4}-r F_{3}}{F_{3}-r F_{2}}=s \\ \vdots \\ \frac{F_{n}-r F_{n-1}}{F_{n-1}-r F_{n-2}}=s \end{array} F2rF1F3rF2=sF3rF2F4rF3=sFn1rFn2FnrFn1=s

上式共 n − 2 n-2 n2 个式子,男乘得
F n − r F n − 1 F 2 − r F 1 = s n − 2 \frac{F_{n}-r F_{n-1}}{F_{2}-r F_{1}}=s^{n-2} F2rF1FnrFn1=sn2
由于 s = 1 − r , F 1 = F 2 = 1 s=1-r, F_{1}=F_{2}=1 s=1r,F1=F2=1, 所以有
F n = s n − 1 + r F n − 1 F_{n}=s^{n-1}+r F_{n-1} Fn=sn1+rFn1
F n − 1 , F n − 2 F_{n-1} , F_{n-2} Fn1Fn2 直到 F 3 F_{3} F3 按照上述递推关系式进行展开有
F n = s n − 1 + r F n − 1 = s n − 1 + r ( s n − 2 + r F n − 2 ) = s n − 1 + r s n − 2 + r 2 F n − 2 = s n − 1 + r s n − 2 + r 2 ( s n − 3 + r F n − 3 ) = s n − 1 + r s n − 2 + r 2 s n − 3 + r 3 F n − 3 = … = s n − 1 + r s n − 2 + r 2 s n − 3 + … + r n − 2 s + r n − 1 F 1 = s n − 1 + r s n − 2 + r 2 s n − 3 + … + r n − 2 s + r n − 1 \begin{aligned} F_{n} & =s^{n-1}+r F_{n-1}=s^{n-1}+r\left(s^{n-2}+r F_{n-2}\right) \\ & =s^{n-1}+r s^{n-2}+r^{2} F_{n-2}=s^{n-1}+r s^{n-2}+r^{2}\left(s^{n-3}+r F_{n-3}\right) \\ & =s^{n-1}+r s^{n-2}+r^{2} s^{n-3}+r^{3} F_{n-3}=\ldots \\ & =s^{n-1}+r s^{n-2}+r^{2} s^{n-3}+\ldots+r^{n-2} s+r^{n-1} F_{1} \\ & =s^{n-1}+r s^{n-2}+r^{2} s^{n-3}+\ldots+r^{n-2} s+r^{n-1} \end{aligned} Fn=sn1+rFn1=sn1+r(sn2+rFn2)=sn1+rsn2+r2Fn2=sn1+rsn2+r2(sn3+rFn3)=sn1+rsn2+r2sn3+r3Fn3==sn1+rsn2+r2sn3++rn2s+rn1F1=sn1+rsn2+r2sn3++rn2s+rn1

可见 F n F_{n} Fn 是首项为 s n − 1 s^{n-1} sn1 ,公比为 r s \frac{r}{s} sr ,末项为
r n − 1 r^{n-1} rn1 的等比数列求和,根据等比数列求和公式有
F n = s n − 1 ( 1 − ( r s ) n ) 1 − r s = s n − r n s − r F_{n}=\frac{s^{n-1}\left(1-\left(\frac{r}{s}\right)^{n}\right)}{1-\frac{r}{s}}=\frac{s^{n}-r^{n}}{s-r} Fn=1srsn1(1(sr)n)=srsnrn
r r r s s s 代入得斐波那契数列的通项公式 F n F_{n} Fn
F n = s n − r n s − r = ( 1 + 5 2 ) n − ( 1 − 5 2 ) n 1 + 5 2 − 1 − 5 2 = 1 5 [ ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ] \begin{aligned} F_{n} & =\frac{s^{n}-r^{n}}{s-r}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}} \\ & =\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right] \end{aligned} Fn=srsnrn=21+5 215 (21+5 )n(2

  • 19
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值