CodeForces - 776C Molly's Chemicals(思维)

题目链接:http://codeforces.com/contest/776/problem/C

题意:给你n个数,求有多少个区间和是k的幂。

思路:正常思路是枚举每个区间看有多少个是k的幂,但是这是O(n2)。所以换个思路:区间和最大也就1e14,区间和可以用前缀和sum[r]-sum[l]=k^x  =>  sum[r]-k^x=sum[l]。左边枚举只需要O(n*(log2(1e14)) ,而sum[l]用一个map存好r左边的前缀和就行了。

注意:当k=1,-1时,幂会出现重复,需要特判一下。

代码:

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define fuck(x) cout<<"<"<<x<<">"<<endl
#define fi first
#define se second
#define pb push_back 
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
using namespace std;
typedef long long LL;
typedef unsigned long long ull;
typedef pair<LL, LL> pii;
const double PI = acos(-1.0);
const LL INFLL = 0x3f3f3f3f3f3f3f3fll;
const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;


int n,k;
LL a[maxn];
LL sum[maxn];
map<LL,LL>mp;
int main() {
    scanf ("%d%d",&n,&k);
    sum[0]=0;
    mp.clear();
    LL ans=0;
    for (int i=1;i<=n;i++) scanf ("%lld",&a[i]),sum[i]=sum[i-1]+a[i];
    for (int i=1;i<=n;i++){
        mp[sum[i-1]]++;
        LL tmp=1;
        for (int j=0;j<=47;j++){
            if (tmp>1e15||tmp<-1e15) break;
            LL t=sum[i]-tmp;
            ans+=mp[t];
            tmp*=k;
            if (k==1) break;
            if (k==-1&&tmp==1) break;
        }
    }
    printf ("%lld\n",ans);
    return 0;
} 

 

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值