常用 pandas 和 numpy 函数总结

原文地址:

点击打开链接 http://blog.csdn.net/zhuxiaodong030/article/details/54316345

PandasNumPy是Python中两个非常流行的数据处理分析库,它们在数据科学机器学习领域有着广泛的应用。 ### Pandas Pandas是一个强大的数据分析工具,主要用于数据操作分析。它提供了高效的数据结构,如Series(一维)DataFrame(二维),使得处理结构化数据变得非常方便。Pandas的主要特点包括: 1. **数据读取写入**:支持多种数据格式的读取写入,如CSV、Excel、SQL数据库等。 2. **数据清洗**:提供了丰富的数据清洗功能,如处理缺失值、重复数据、数据类型转换等。 3. **数据操作**:支持数据的切片、过滤、聚合、合并等操作。 4. **时间序列处理**:提供了强大的时间序列处理功能。 ### NumPy NumPy是Python中科学计算的基础库,主要用于处理大型多维数组矩阵。NumPy的核心对象是ndarray(n维数组),它提供了高效的数组运算功能。NumPy的主要特点包括: 1. **高效的数组运算**:提供了丰富的数学函数,支持向量化操作,极大地提高了计算效率。 2. **多维数组**:支持创建操作多维数组,方便进行复杂的数学运算。 3. **线性代数**:提供了线性代数相关的函数,如矩阵乘法、矩阵求逆等。 4. **随机数生成**:提供了生成随机数的函数,方便进行随机抽样模拟。 ### 区别与联系 - **数据处理**:Pandas更侧重于数据的处理分析,而NumPy更侧重于数值计算。 - **数据结构**:Pandas的核心数据结构是DataFrameSeries,而NumPy的核心数据结构是ndarray。 - **应用场景**:Pandas适用于数据清洗、分析预处理,而NumPy适用于需要进行大量数值计算的场景。 ### 示例代码 ```python import pandas as pd import numpy as np # 使用NumPy创建一个二维数组 array = np.array([[1, 2, 3], [4, 5, 6]]) print("NumPy数组:") print(array) # 使用Pandas创建一个DataFrame df = pd.DataFrame({ 'A': [1, 4], 'B': [2, 5], 'C': [3, 6] }) print("\nPandas DataFrame:") print(df) ``` 通过上述示例,可以看到NumPyPandas在数据处理计算方面的不同应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值