Python预处理之pandas、numpy介绍和常用函数使用

本文详细介绍了numpy的基本概念、数据结构、数据类型、数组属性及常用函数,包括创建、转换、运算、CSV文件存取、多维数据存取和统计函数。同时,对pandas进行了介绍,探讨了其数据结构Series和DataFrame,以及数据读取、写入、增删改查等操作。最后,通过案例展示了numpy和pandas在数据提取中的应用。
摘要由CSDN通过智能技术生成

目录

一、numpy基本介绍

1、什么是numpy

2、numpy的数据结构

3、numpy数据类型

4、numpy数组的属性

5、numpy常用函数

(1)常用创建函数

(2)常用的转换函数

(3)数组的运算

(4)CSV文件存取

(5)多维数据存取

(6)随机数函数

(7)梯度函数

(8)统计函数

二、pandas基本介绍

1、什么是pandas

2、pandas的数据结构

3、pandas常用操作

(1)数据读取与写入

(2)Dataframe的增删改查

(3)查看Dataframe

三、numpy、pandas的使用演示

1、数据介绍

2、数据提取

(1)列的提取

(2)列多行索引

 (3)更改index,使用loc,iloc索引

(4)特定值提取


一、numpy基本介绍

1、什么是numpy

NumPy(Numerical Python)是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)),支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

2、numpy的数据结构

numpy的数据结构是ndarray,它是一种N维的数组类型,它描述了相同类型的“items”的集合,同时在ndarray中的数据类型都是相同的因此他含有的数据类型相同,因此numpy运算的数据的速度非常的快。

3、numpy数据类型

numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型。下表列举了常用 NumPy 基本类型。

numpy基本数据类型
名称 描述
bool_ 布尔型数据类型(True 或者 False)
int_ 默认的整数类型
intp 用于索引的整数类型
... ...

4、numpy数组的属性

在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。

ndarray 对象重要属性
属性 说明
ndarray.ndim() 秩,即轴的数量或维度的数量
ndarray.shape() 数组的维度,对于矩阵,n 行 m 列
ndarray.size() 数组元素的总个数,相当于 .shape 中 n*m 的值
ndarray.dtype() ndarray 对象的元素类型
ndarray.itemsize() ndarray 对象中每个元素的大小,以字节为单位
ndarray.flags() ndarray 对象的内存信息
ndarray.real() ndarray元素的实部
ndarray.imag() ndarray 元素的虚部
ndarray.data() 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

5、numpy常用函数

(1)常用创建函数

常用的创建函数
函数名 作用
np.ndarray() 创建数组
np.arange(n) 元素从0到n-1的ndarray类型
np.ones(shape) 根据shape生成一个全1数组,shape是元组类型
np.zeros((shape) 根据shape生成一个全0数组,shape是元组类型
np.full(shape, val) 根据shape生成一个数组,每个元素值都是val
np.eye(n) 创建一个正方的n*n单位矩阵,对角线为1,其余为0
np.ones_like(a) 根据数组array_03的形状生成一个全1数组
np.zeros_like(a) 根据数组a的形状生成一个全0数组
np.full_like(array_03,99) 根据数组a的形状生成一个数组,每个元素值都是val
np.linspace(1,10,10) 根据起止数据等间距地填充数据,形成数组
np.concatenate((a, b), axis=0) 纵向连接 # 将两个或多个数组合并成一个新的数组

注:shape是形状即假设shape是(2,3)他所生成的矩阵就是2行3列的形状,后面shape都是一样的意思。

(2)常用的转换函数

①数组维度转换

数组维度转换
函数 作用
np.reshape(shape) 不改变数组元素,返回一个shape形状的数组,原数组a不变9
np.resize(shape) 改变数组的shape,且修改原数组
np.swapaxes(ax1, ax2) 将两个维度调换
np.flatten() 把数组的维度降低,返回折叠后的一维数组,原数组不变

②数组类型转换

数组类型转换
函数 作用
b.astype(np.int16) astype()方法一定会创建新的数组(原始数据的一个拷贝),即使两个类型一致
b.tolist() 转换成list类型

注:b是变量名,不是定义的numpy名称,为了方便大家都会对numpy as为np

(3)数组的运算

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sheenky

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值