数据可视化–matplotlib
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
%matplotlib inline
# 简单绘制一个正太分布图
data=np.arange(-3,3,0.05)
plt.plot(data,stats.norm.pdf(data))
# 如果想同时绘制多个图形,那么可以先多次调用plot函数
plt.plot(data,stats.norm.pdf(data))
plt.plot(data,stats.norm.pdf(data,1.0,0.5))
# 保存图片
plt.plot(data,stats.norm.pdf(data))
plt.plot(data,stats.norm.pdf(data,1.0,0.5))
plt.savefig('./Myplot.png',format='png') # 需要设置图片路径与图片格式
# 调整坐标轴
axes=plt.axes() # 先获取到坐标轴
axes.set_xlim(-5,5) # 设置x轴范围
axes.set_ylim(0,1)
axes.set_xticks([-5,-4,-3,-2,-1,0,1,2,3,4,5]) # 设置指定的x轴刻度
axes.set_yticks([0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])
plt.plot(data,stats.norm.pdf(data))
plt.plot(data,stats.norm.pdf(data,1,0.5))
# 添加网格线
axes=plt.axes() # 先获取到坐标轴
axes.set_xlim(-5,5) # 设置x轴范围
axes.set_ylim(0,1)
axes.set_xticks([-5,-4,-3,-2,-1,0,1,2,3,4,5]) # 设置指定的x轴刻度
axes.set_yticks([0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])
axes.grid() # 使用grid()函数即可调用网格线
plt.plot(data,stats.norm.pdf(data))
plt.plot(data,stats.norm.pdf(data,1,0.5))
# 修改线形和颜色
axes=plt.axes() # 先获取到坐标轴
axes.set_xlim(-5,5) # 设置x轴范围
axes.set_ylim(0,1)
axes.set_xticks([-5,-4,-3,-2,-1,0,1,2,3,4,5]) # 设置指定的x轴刻度
axes.set_yticks([0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])
plt.plot(data,stats.norm.pdf(data),'b-') # 使用蓝色blue,实线-
plt.plot(data,stats.norm.pdf(data,1,0.5),'r:') # 使用红色red,虚线:
# 当然还可以使用其他格式的线形跟颜色
axes=plt.axes() # 先获取到坐标轴
axes.set_xlim(-5,5) # 设置x轴范围
axes.set_ylim(0,1)
axes.set_xticks([-5,-4,-3,-2,-1,0,1,2,3,4,5]) # 设置指定的x轴刻度
axes.set_yticks([0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])
plt.plot(data,stats.norm.pdf(data),'g--') # 使用绿色,双短划线
plt.plot(data,stats.norm.pdf(data,1,0.5),'y-.') # 使用黄色,线点组合
# 标记坐标轴并添加图例
axes=plt.axes() # 先获取到坐标轴
axes.set_xlim(-5,5) # 设置x轴范围
axes.set_ylim(0,1)
axes.set_xticks([-5,-4,-3,-2,-1,0,1,2,3,4,5]) # 设置指定的x轴刻度
axes.set_yticks([0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])
plt.plot(data,stats.norm.pdf(data),'g-')
plt.plot(data,stats.norm.pdf(data,1,0.5),'y-.')
plt.xlabel('X') # 设置x轴标签
plt.ylabel('Y')
plt.title('X-Y') # 设置标题名称
plt.legend(['one','two']) # 设置并显示图例,图例位置默认为右上角
# 绘制饼图
data=[12,55,4,32,14]
colors=['r','g','b','c','m']
explode=[0,0,0.2,0,0] # 突出显示
labels=list('ABCDE')
autopct='%1.2f%%' # 设置百分比格式
plt.pie(x=data,colors=colors,labels=labels,explode=explode,autopct=autopct,shadow=True)
plt.legend() # 显示标签
plt.title('Pie')
# 绘制条形图
x=range(5) # 设置x轴条形图的个数
data=[12,55,4,32,14] # 设置条形图的高度
plt.bar(x=x,height=data,edgecolor='black')
plt.legend(['A-shop'])
plt.title('Bar')
plt.xlabel('date')
plt.ylabel('production')
# 散点图
x=np.random.normal(22,3,500)
y=np.random.normal(22,3,500)
plt.scatter(x=x,y=y,edgecolor='black')
plt.title('scatter')
# 直方图
data=np.random.normal(5000,1000,1000)
plt.hist(data,50,edgecolor='black')
plt.title('hist')
# 箱型图
data=np.random.normal(22,3,500)
data=np.append(data,50) # 传入一个非常异常值,便于观察
plt.boxplot(x=data)
plt.title('boxplot')