一些基本形态学算法------连接部分提取算法

当处理二值图像时,形态学的主要应用是提取表示和描述形状的有用成分。特别是用形态学方法提取某一区域边界线,连接成分,骨骼,凸壳的算法是十分有效的。此外,区域填充,细化,加粗,裁剪等处理方法也经常与上述算法相结合在预处理和后处理中使用。

为使概念清楚,这些算法的讨论大部分采用的是二值图像,即只有黑白两级灰度,1表示黑,0表示白。


在实际应用中,在二值图像中提取相连接部分是许多自动图像分析应用关注的问题。Y表示一个包含于集合A的连接部分,假设Y内的一个点P已知。那么下述迭代表达式可以得到Y中的所有元素

Xk=(Xk-1 ⊕B)∩A,k=1,2,3.。。。

其中X0=P,B为一合适的结构元素,如图所示。如果Xk=Xk-1,则算法收敛,并使Y=Xk。


图a所示为集A包含一个连接部分Y和初始点P,图b是结构元,图c是第一次迭代结果,图d是第二次迭代结果,图e是最终结果。


主体思想: 任何一个图像 肯定有多个或一个区域 每个区域在横向扫描时 会有分裂和合并 比如圆环 顶部有一个分裂点 底部有一个合并点 没有分裂合并的图形 就是简单的凸图像 很容易通过外形识别 而复杂的图像 就是凹的 就需要分裂合并点来识别 旋转30度 60度 90度 120,150 得到的分裂合并点序列是不同的 可以通过分析分裂合并点可以获得角点 区域连接特征: 重心和中心的偏置对宽高的比例 和方向 分裂合并点和重心位置的比例 方向 亮度和面积的比 这些是旋转和缩放不变的特征 适合用于图像的模式识别 如果图像包含n个区域特征 每个区域都有N个以上的特征 如果图形复杂 需要使用决策树内嵌 svm 最近邻等等算法来综合分析分裂合并特征点 如果简单 基本就区域特征搞定了 应用领域: 视频的背景提取提取帧差的区域,过滤该区域计算背景。目前实现的效果超好,速度超快。目前现阶段是最好的背景前景提取算法。 物体或个体的数目统计,该算法仅仅遍历一次图像像素点,因此性能好,可以处理超大图片。 角点检测匹配图像。 图像智能分析识别方面,把特征点归一化和旋转处理后的特征进行训练。用决策树或svm等人工智能模型进行预测。包括人脸识别,行人识别,指纹识别。ocr字符识别等等。 网页认证校验码识别 二维码识别等等
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值