自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Henry的博客

佛系学习,正常摆烂

  • 博客(518)
  • 收藏
  • 关注

原创 改进系列(14):基于Swin Transformer的SAM交互式图像分割方法研究:腹部13器官分割

本文提出了一种基于Swin Transformer架构的交互式图像分割方法,通过引入点提示机制实现用户引导的精确分割。该方法采用编码器-解码器结构,在编码阶段利用Swin Transformer的层次化特征提取能力,在解码阶段结合跳跃连接恢复空间细节。实验结果表明,该方法在标准数据集上取得了较高的分割精度,同时支持用户通过点击交互优化分割结果。本文详细介绍了网络架构设计、训练策略以及交互式推理系统的实现。关键词:交互式图像分割;深度学习;点提示;医学图像分析。

2025-06-19 16:54:34 1116 2

原创 改进系列(1):TransUnet结合SAM box改进对MICCAI FLARE腹部13器官图像分割

本章尝试将TransUnet和SAM结合,以期望达到更换的模型TransUnet作为医学图像分割的基准,在许多数据集上均取得了很好的效果,然而最近SAM大模型的兴起,图像分割似乎有了新的方向关于图像分割项目、sam模型复现参考本人其他专栏,这里之作简单介绍TransUnet是一个专门为医学图像分割任务设计的深度学习模型。它是一种卷积神经网络(CNN),采用基于变压器的架构。TransUnet在具有相应分割掩模的大型医学图像数据集上进行训练,以学习如何从输入图像中准确分割器官、病变或其他结构。

2024-10-12 16:12:44 1747 2

原创 Unet 实战分割项目、多尺度训练、多类别分割

之前写了篇二值图像分割的项目,支持多尺度训练,网络采用backbone为vgg的unet网络。本章实现的unet网络的多类别分割,也就是分割可以是两个类别,也可以是多个类别。训练过程仍然采用多尺度训练,即网络会随机将图片缩放到设定尺寸的0.5-1.5倍之间。

2024-02-05 21:38:35 8469 21

原创 基于改进TransUNet的港口船只图像分割系统研究

本文提出了一种改进的TransUNet架构用于港口船只图像分割,通过引入空间注意力机制(SA)和特征金字塔注意力模块,有效提升了复杂场景下的分割精度。系统采用模块化设计,包含数据预处理、改进网络架构、训练框架和图形化界面。创新点包括:1) SA模块增强关键区域关注;2) 特征金字塔实现多尺度融合;3) 改进的Dice+交叉熵损失函数。实验表明该系统在准确性、鲁棒性和实用性方面表现优异,为港口智能化管理提供了高效解决方案。

2025-11-07 18:38:50 771

原创 基于区域生长算法的图像分割方法设计与实现(附代码)

本文实现了一个基于区域生长的Python图像分割系统,采用8邻域生长策略,支持交互式和自动种子点选择。系统通过设定生长阈值和最小区域大小等参数,能够有效分割出与种子点灰度相似的连续区域。实验表明该方法在目标与背景对比明显的场景下表现良好,但存在对噪声敏感和参数依赖性强等局限性。未来可结合边缘检测、自适应阈值等技术进一步提升分割性能。该系统为图像分析任务提供了简单有效的分割工具。

2025-10-30 18:53:07 36

原创 分类算法-逻辑回归

本文系统介绍了逻辑回归算法的原理与应用。首先阐述了分类算法的基本概念,指出逻辑回归虽名为回归实为分类模型,其核心是通过Sigmoid函数将线性组合转换为概率值(0-1区间),并以0.5为阈值进行二分类决策。通过垃圾邮件识别案例,详细演示了特征处理、概率计算和分类决策的全过程。深入剖析了模型假设函数、对数损失函数和梯度下降优化等数学原理,将工作流程概括为模型假设、损失构建、梯度计算和参数更新四个步骤。最后分析了逻辑回归简单高效、可解释性强等优点,以及线性限制、异常值敏感等不足,并给出了客户流失预测的完整实现案

2025-10-10 14:51:21 1129

原创 基于深度残差U-Net与多尺度注意力机制的医学图像分割系统

本文提出了一种创新的医学图像分割系统,通过融合残差连接、通道注意力机制和空间金字塔池化技术,构建了高性能的UResnet分割网络。系统采用编码器-解码器架构,创新性地引入多层次特征增强模块,显著提升了医学图像中复杂组织结构的分割精度。实验结果表明,该方案在多个医学图像数据集上均取得了优异性能,边界分割精度提升15%,训练收敛速度提升30%,同时减少20%计算量。系统为临床诊断提供了可靠的技术支持,未来可扩展至3D医学图像分割和联邦学习等方向。

2025-10-09 08:30:11 602

原创 基于U-Net与Attention U-Net的医学图像分割系统详解

本文介绍了一个基于PyTorch的医学图像分割系统,支持U-Net和AttentionU-Net两种网络,适用于多类别语义分割任务。项目包含完整的数据预处理、模型训练、评估和预测功能,特别针对CT扫描等医学图像优化,提供数据增强、窗口化处理等功能。系统采用模块化设计,包含数据集处理、模型定义、训练流程、评估指标和可视化工具,并支持多种分割指标计算。项目可扩展性强,可用于医学影像、遥感和工业质检等领域,未来可集成更多模型和功能。

2025-09-26 09:25:29 1114

原创 SwinTransformer特征提取融合convNeXt创新改进

本文介绍了一个基于深度学习的图像分类系统,该系统创新性地融合了SwinTransformer和ConvNeXt架构,并结合CBAM注意力机制与多尺度特征融合技术。系统实现了完整的训练-验证-测试流程,采用FocalLoss解决类别不平衡问题,支持多种优化器和学习率策略。通过数据增强和混合架构设计,在验证集上取得了99.5%的准确率。系统提供丰富的可视化功能(损失曲线、混淆矩阵、ROC曲线等)和用户友好的图形界面,支持图像加载和实时分类,为非专业用户提供了便捷的操作体验。

2025-09-12 14:32:04 1025

原创 Unet创新改进:基于点提示的交互式图像分割系统设计与实现

摘要:本文提出了一种基于点提示的交互式图像分割系统,采用改进的U-Net架构,通过用户提供的正负样本点实现精确分割。系统包含完整的训练、验证和交互推理流程,支持多类别分割。创新性地引入点提示通道,将用户交互信息(正负样本点)与图像特征结合输入网络。实验结果显示,该系统在mIoU(0.8543)和Dice系数(0.8912)等指标上表现优异,具有快速响应和高质量分割的特点。系统采用Tkinter构建GUI界面,支持用户通过点击交互实时获取分割结果,为医学图像、自动驾驶等领域的精细分割任务提供了有效解决方案。

2025-09-12 08:57:27 1098

原创 UNet 改进:添加EfficientViMBlock

本文提出了一种改进的UNet架构,通过集成高效的EfficientViMBlock模块,将CNN的局部特征提取能力与Transformer的全局建模优势相结合。该架构包含标准UNet组件(DoubleConv、Down、Up、OutConv)和创新设计的EfficientViMBlock,后者采用深度可分离卷积和多头自注意力机制的混合结构,并引入可学习的层缩放参数优化分支融合。实验表明,这种灵活可配置的混合架构在保持UNet原有优势的同时,显著提升了特征提取效率,特别适用于医学图像分割、遥感分析等需要精确像

2025-08-10 06:24:29 282

原创 分类算法:支持向量机

支持向量机(SVM)是一种强大的机器学习分类算法,它通过寻找最优决策边界来实现分类,具有出色的泛化能力。SVM的核心思想是最大化间隔,确保决策边界远离两侧数据点,提高模型鲁棒性。它特别适合小样本、高维数据分类,如文本分类和生物医学数据分析。虽然计算成本较高,但SVM在处理非线性问题和抗过拟合方面表现优异。通过核函数如RBF,SVM能有效处理复杂边界问题。完整案例展示了SVM在非线性数据集上的应用,包括模型训练、评估和可视化决策边界的过程。

2025-08-10 06:10:22 922

原创 VGG 改进:融合CNN与Transformer的VGG模型

本文提出了一种结合VGG16 CNN和Vision Transformer的混合架构。该模型在传统VGG16的卷积层之间插入Transformer模块,包含三个核心组件:1) Transformer编码器层实现自注意力机制;2) Vision Transformer模块处理图像块序列;3) 主模型集成CNN和Transformer的优势。该架构既能提取局部特征,又能建模全局关系,通过可学习的位置编码和残差连接实现高效特征融合。实验表明,这种混合设计在保持CNN优势的同时,增强了模型的全局建模能力,为计算机视

2025-07-27 11:06:30 180

原创 SwinTransformer 改进:稀疏化注意力机制(Sparse Attention)

本文提出了一种改进的稀疏注意力机制(SparseAttention),通过保留top-k注意力权重显著降低了Transformer模型的计算复杂度。该方法针对SwinTransformer架构实现,包含三个关键技术:1) 稀疏注意力层仅计算和保留top-k权重,减少计算量;2) 相对位置编码保持位置感知能力;3) 自动替换机制可将原始注意力层全部替换为稀疏版本。实验表明,该方法在保持模型性能的同时提升了计算效率,特别适用于高分辨率图像处理等场景。代码实现了完整的稀疏注意力模块和模型替换流程,为Transfo

2025-07-24 15:38:08 378

原创 梯度下降法详解:优化算法的核心与实现

本文系统介绍了机器学习中的核心优化算法——梯度下降法。该方法通过沿目标函数梯度反方向迭代调整参数,寻找最优解。文章详细解析了其工作原理(如盲人下山类比)、数学推导(以二次函数为例)和实现步骤,并讨论了学习率等关键参数的影响。通过Python代码实例展示了该方法在3D数据拟合中的应用,直观呈现了损失函数动态变化和参数优化过程。梯度下降法因其通用性强、计算高效等特点,成为深度学习等领域的基石算法。

2025-07-24 12:55:17 768

原创 甲状腺结节TI-RADS分类的多目标分类头任务深度学习模型评估报告

本研究开发了一个基于ResNet50的多任务深度学习模型,用于甲状腺结节的TI-RADS分类。模型同时预测成分、回声、形状、边缘和强回声灶五个关键特征,并计算最终TI-RADS等级。在192例超声图像数据集上的评估显示:1)模型在TI-RADS等级预测总体准确率达58%,各特征预测准确率95%-99%;2)当假设成分和强回声灶预测正确时,总分差异在±1分内的准确率达95%。该研究为甲状腺结节的标准化评估提供了有效工具,具有临床应用价值。完整代码可通过CSDN下载获取。

2025-07-18 12:13:58 305

原创 具身智能与人形机器人:技术革命重塑未来

        2025年,具身智能(Embodied AI)首次被写入,标志着这一技术正式成为国家战略级未来产业的核心方向。具身智能的核心在于赋予人工智能“物理身体”,使其通过多模态感知、实时决策和环境交互,实现从虚拟智能向实体智能的跨越。        作为具身智能的理想载体,人形机器人正在全球范围内迎来爆发式落地——从工厂车间到救援现场,从马拉松赛道到家庭客厅,一场“碳硅共生”的文明图景正加速展开。

2025-07-06 14:33:17 2368

原创 SwinTransformer 改进:小波+注意力模块(Wavelet-Guided Attention)

本文提出了一种结合Swin Transformer和小波引导注意力模块(WGAM)的创新模型架构。WGAM通过Haar小波分解将特征图分为四个子带(LL,LH,HL,HH),并分别应用通道注意力和空间注意力机制,同时为各子带分配可学习权重。该模块被集成到Swin Transformer的patch embedding层之后,在不显著增加计算复杂度的情况下,实现了多尺度特征提取和自适应特征增强。实验表明,这种混合架构特别适合高分辨率图像分类、医学图像分析和遥感图像处理等任务。模型采用模块化设计,可灵活集成到其

2025-06-21 10:24:37 472

原创 基于EfficientNet的手势识别计算器系统设计与实现

本文提出了一种基于EfficientNet的手势识别计算器系统,通过深度学习技术实现了1-9手势数字的准确识别和基本算术运算。系统采用EfficientNet-B0网络架构,经过迁移学习和微调训练,在测试集上达到99%的识别准确率。PyQt5构建的图形界面支持用户上传手势图片并执行加减乘除运算,结果实时显示。研究表明该系统具有识别精度高、交互自然、操作简便等特点,在教育、辅助计算等领域具有应用价值,但仍存在仅支持静态手势识别等局限性。

2025-06-21 08:26:34 174

原创 UNet 改进:结合CAM注意力与DLKA注意力的改进UNet

本文提出一种改进的UNet网络架构,通过引入通道注意力模块(CAM)和动态大核注意力模块(DLKA)显著提升特征提取能力。该网络采用经典的编码器-解码器结构,核心创新点包括:1)Triplet_DoubleConv模块整合常规卷积、CAM和DLKA;2)CAM模块通过双路径池化学习通道重要性;3)DLKA模块使用7×7深度可分离卷积捕获大范围空间关系。网络特别适用于医学图像分割等精细任务,在保持UNet优势的同时增强了对长距离依赖和重要特征的捕捉能力。完整PyTorch实现展示了模块化设计,便于迁移应用。

2025-06-19 16:43:15 480

原创 EfficientNet 改进:StripCGLU模块的创新与应用

本文提出了一种改进的EfficientNet-b0模型,核心创新是通过引入StripCGLU模块来提升网络性能。StripCGLU结合了水平/垂直条带卷积和GLU激活机制,具有参数效率高、计算量少的优点。改进策略包括选择性替换部分MBConv为StripCGLU模块(每隔3个块插入),同时保留早期层结构。测试表明该模型适用于移动端视觉任务,在保持效率的同时提升性能。代码实现包含模块定义、模型构建及测试部分,展示了如何通过精心设计的模块改进现有网络架构。

2025-06-17 17:42:50 115

原创 SwinTransformer 改进:结合DLKA与SSPP的模型架构

本文提出了一种创新的计算机视觉模型架构,结合Swin Transformer、动态大核注意力(DLKA)和空间金字塔池化(SSPP)模块。该设计融合了Transformer的全局建模能力与CNN的局部特征提取优势,其中DLKA模块通过通道和空间注意力增强局部特征提取,SSPP模块实现多尺度特征融合。模型在Swin Transformer基础上插入这两个模块,形成兼顾全局-局部特征表达和多尺度处理的混合架构。实验验证表明,该模型适用于需要同时关注细粒度细节和全局上下文的视觉任务,为计算机视觉模型设计提供了新的

2025-06-17 13:27:09 254

原创 ShuffleNet 改进:与通道注意力机制(CAM)的结合实现

本文提出了一种改进的ShuffleNetV2模型,通过集成通道注意力机制(CAM)增强特征表示能力。CAM模块采用双分支结构(平均池化+最大池化)学习通道权重,并使用带压缩比的MLP减少参数量。模型保留了ShuffleNetV2的轻量特性,支持预训练权重加载,通过维度转换技巧将CAM无缝集成到网络中。实验验证表明,该方法在保持高效性的同时提升了模型性能,为轻量级网络设计提供了有效参考。代码开源,可直接应用于图像分类等任务。

2025-06-09 16:20:40 199

原创 改进系列(13):基于改进U-ResNet的脊椎医学图像分割系统设计与实现

本文提出一种改进的U-ResNet医学图像分割系统,通过融合残差连接、通道注意力机制和空间金字塔池化模块,显著提升分割精度。系统采用端到端深度学习框架,实现数据预处理、模型训练到可视化分析全流程自动化。实验表明,该方法平均DSC达0.92以上,优于传统分割网络,并提供友好GUI界面支持交互式操作。改进的网络架构包含多级残差块编码器、多尺度瓶颈层和带注意力机制的解码器,配合联合损失函数优化,有效解决医学图像分割中的特征提取不足和小目标分割难题。系统还实现了六种评估指标计算和多种可视化分析功能。

2025-06-09 13:42:51 870

原创 MobileNet 改进:基于MobileNetV2和SSPP的图像分类

本文介绍了一种结合MobileNetV2和空间金字塔池化(SSPP)的轻量级图像分类模型。该模型采用MobileNetV2作为特征提取器,并集成了自定义SSPP模块,通过多尺度池化增强特征表达能力。模型结构包含特征提取、SSPP处理和线性分类三个部分,其中SSPP支持可配置的池化层级(默认1×1,2×2,4×4)。这种设计既保持了MobileNetV2的高效特性,又提升了模型对不同尺寸特征的适应能力。测试代码验证了模型可处理224×224输入并输出正确维度的分类结果。该实现为计算机视觉任务提供了一种平衡性能

2025-06-06 09:10:32 192

原创 ResUNet 改进:融合DLKA注意力机制

本报告详细分析了一个名为UResnet的深度学习网络架构,该网络结合了U-Net的编码器-解码器结构、ResNet的残差连接以及新型的Dilated Large Kernel Attention(DLKA)注意力机制。该网络设计用于图像分割任务,通过多尺度特征提取和融合实现精确的像素级预测。

2025-06-05 14:29:39 133

原创 CentOS在vmware局域网内搭建DHCP服务器【踩坑记录】

本文记录了在CentOS系统上配置DHCP服务的完整流程:首先确保NAT模式联网,修改yum镜像源后安装DHCP服务;然后配置虚拟机网络为vmnet10(虚拟交换机模式),设置CentOS静态IP时需特别注意格式规范;接着编辑dhcpd.conf文件定义IP地址池(192.168.10.200-210)、网关和DNS;最后启动DHCP服务并设置防火墙规则。成功搭建后,Windows客户端切换为自动获取IP即可完成网络配置,通过/var/lib/dhcpd/dhcpd.leases文件可查看租约信息。全程重点

2025-06-04 18:19:32 1335 1

原创 基于深度学习(Unet和SwinUnet)的医学图像分割系统设计与实现:超声心脏分割

本文提出了一种基于深度学习的医学图像分割系统,采用U-Net和Swin-Unet两种网络架构,实现了高效的医学图像分割。系统包含完整的数据预处理、模型训练评估流程,并提供用户友好的图形界面。实验结果表明,该系统在CT等医学图像分割任务中表现优异,Swin-Unet架构性能优于传统U-Net,窗宽窗位调整显著改善CT图像分割效果。系统具有模块化设计、易扩展等特点,为临床诊断提供了有效的计算机辅助工具。

2025-06-04 09:56:29 439

原创 基于人工智能算法实现的AI五子棋博弈

本项目开发了一个基于Python和Pygame的五子棋游戏系统,包含三种对战模式:人人对战、人机对战和AI对战。系统采用模块化设计,包括棋盘管理、AI决策和主程序三大模块。AI算法基于博弈树搜索和评估函数,实现了棋型识别、Alpha-Beta剪枝、迭代加深搜索等优化技术,能够提供较强对战能力。系统支持自定义游戏模式和AI参数,具有清晰的用户界面和交互设计。未来可进一步优化算法性能并扩展功能,如增加难度选择、网络对战等。项目代码结构合理,便于后续开发和改进。

2025-06-03 15:26:16 1549

原创 NLP实战(5):基于LSTM的电影评论情感分析模型研究

本研究提出了一种基于双向LSTM的深度学习模型,用于电影评论的细粒度情感分类(5分类)。模型采用词嵌入层(100维)、双向LSTM层(2层256维)和全连接层结构,在标准数据集上通过5折交叉验证评估,平均准确率达到55.52%。实验结果显示模型能够有效区分负面、中性到正面的情感表达,其中中性情感与"有点积极/负面"的区分存在改进空间。研究提供了完整的数据预处理流程、模型架构和训练策略,代码已实现模块化,便于复现。未来可结合预训练词向量和注意力机制进一步提升性能。

2025-06-03 13:27:38 1343

原创 U-ResNet 改进:集成CoordinateAttention(坐标注意力)

本文介绍了一种名为UResNet的混合神经网络结构,它结合了ResNet的残差连接、UNet的编码-解码架构以及坐标注意力机制。该网络通过BasicBlock/BottleNeck构建块实现特征提取,采用VGGBlock进行卷积处理,并引入CoordinateAttention模块增强位置感知。在编码阶段逐层下采样,解码阶段通过上采样和跳跃连接恢复分辨率,最终输出分割结果。代码实现展示了完整的网络架构和数据处理流程,测试结果表明该模型能有效处理224×224的输入图像。这种创新组合利用了不同网络的优点,为图

2025-06-02 11:12:45 190

原创 U-ResNet 改进:集成特征金字塔网络(FPN)

本文介绍了UResNet模型的设计与实现,该模型融合了U-Net的编码器-解码器结构、ResNet的残差连接以及特征金字塔网络(FPN)的多尺度特征提取能力。模型包含Up模块、BasicBlock、BottleNeck、VGGBlock和FPN等核心组件,通过编码器下采样、解码器上采样与特征融合,最终输出分割结果。测试表明模型能正确处理256×256输入并输出对应尺寸的分割图。UResNet兼具U-Net的信息保留能力、ResNet的梯度缓解特性以及FPN的多尺度优势,为图像分割任务提供了灵活高效的解决方案

2025-06-02 10:18:00 526

原创 DeepSeek:不同模式(v3、R1)如何选择?

三种模型对比:基础版为默认选项;V3在开放性和规范性文本生成任务中表现优于R1,但使用R1时不宜提供示例(其自主性强)。官方提供PromptLibrary提示语库,V3和R1各有专用提示语模板,例如可将DeepSeek转化为智能体的定制提示方案(150字)

2025-05-29 15:29:02 657

原创 改进系列(12):基于SAM交互式点提示的UNet腹部多脏器分割方法研究

本文提出了一种基于点提示机制的交互式UNet网络用于腹部多脏器医学图像分割。该方法在传统UNet基础上扩展输入通道,加入点提示信息,允许用户在推理阶段通过点击前景和背景区域提供交互指导。实验采用394例腹部CT图像训练,98例验证,最终在验证集上达到Dice系数0.9358和IoU 0.8805的优异性能。与全自动方法相比,该交互式分割方案更具灵活性,能有效修正边界模糊区域的分割错误,为临床医学图像分析提供了实用解决方案。

2025-05-27 10:02:06 810

原创 传输层:TCP协议详解

TCP协议摘要:TCP是一种面向字节流的可靠传输协议,其报文首部包含端口号、序号、确认号等关键字段。通过标记位(URG/ACK/SYN等)控制连接状态,利用窗口机制和校验和确保数据传输可靠性。支持紧急指针处理优先数据,采用自动重传(ARQ)和滑动窗口协议实现高效传输。接收窗口大小动态调整流量,选择确认选项优化重传机制。

2025-05-26 15:05:49 367

原创 ViT模型改进:基于双路径的多尺度特征融合

本文介绍了一种结合Vision Transformer (ViT) 和 ConvNeXt 的双路径深度学习模型,该模型通过多尺度处理和特征融合机制,在图像分类任务中表现出色。模型的核心组件包括多尺度模块和特征融合模块,分别用于捕获不同尺度的空间信息和自适应融合两种架构的特征。多尺度模块利用不同空洞率的卷积并行处理输入特征,而特征融合模块则通过注意力机制动态调整ViT和ConvNeXt特征的权重。双路径模型的设计充分发挥了ViT在全局特征捕获和ConvNeXt在局部特征提取上的优势,并通过预训练权重加速收敛。

2025-05-23 08:26:57 294

原创 插值算法 - 图像缩放插值QT

本文介绍了一个基于PyQt5和OpenCV的图像缩放插值演示工具的实现。该工具允许用户上传本地图片(PNG/JPG/JPEG格式),选择四种常见的插值方法(最近邻插值、双线性插值、双三次插值、区域像素关系插值),并通过滑块实时调整缩放比例(0.1倍到4.0倍),同时并排显示原始图像和缩放后的图像。工具的核心功能包括图像加载与显示、插值方法处理和缩放应用。代码结构清晰,主类ImageScalingGUI负责构建GUI界面和处理用户交互,核心函数apply_scaling根据用户选择的插值方法应用不同的Open

2025-05-22 18:04:18 406

原创 改进系列(11):基于TransUNet改进SA和特征金字塔注意力模块:心脏超声分割

TransUNet是一种结合了Transformer和U-Net架构的医学图像分割模型,它通过将Transformer的强大全局建模能力与U-Net的局部特征提取能力相结合,在医学图像分割任务中表现出色。

2025-05-14 15:43:37 1248

原创 DenseUnet 改进:结合RepHMS动态调整尺度模块

DenseUNet是一种创新的图像分割网络架构,结合了DenseNet的特征提取能力和U-Net的多尺度特征融合机制。其核心创新在于引入了RepHMS模块,该模块支持动态多尺度特征调整,能够根据目标尺寸灵活处理特征图。DenseUNet基于DenseNet-161构建,包含编码路径和解码路径,通过RepHMS模块在解码路径的每个阶段进行多尺度特征调整,并与编码路径的特征进行融合。网络还采用了密集跳跃连接,确保特征的有效传递和重用。DenseUNet支持任意输入通道数和可配置的输出类别数,适用于需要精确像素级

2025-05-14 07:30:00 161

原创 传输层:UDP协议

UDP(User Datagram Protocol,用户数据报协议)是一种无连接的传输层协议,适用于对实时性要求高但允许少量丢包的应用,如视频流和DNS查询。UDP报文由8字节的头部和可变长度的数据部分组成。头部包括源端口号、目的端口号、报文长度和校验和。校验和用于检测传输错误,计算时包括伪头部、UDP头部和数据部分。UDP的特点是无连接、不可靠和轻量级,适用于低延迟场景。示例报文展示了如何构造一个简单的UDP报文。

2025-05-13 19:40:35 661

YOLOV5 改进实战项目【更换骨干网络为mobilenet】:卫星下的船舶检测(包含数据、代码)

YOLOV5 改进实战项目【更换骨干网络为mobilenet】:卫星下的船舶检测(包含数据、代码),经测试,代码可以直接使用。 【yolov5】本项目更换了yolov5骨干网络为官方实现的mobilenet网络 【如何训练】和yolov5一样的训练方法,摆放好datasets数据,然后更改yaml文件中的类别信息即可训练 【数据集】(数据分为分为训练集和验证集) 更多yolov5改进介绍、或者如何训练,请参考: https://blog.csdn.net/qq_44886601/category_12605353.html

2025-11-03

卫星船舶图像目标检测数据【已标注,约400张数据和标签,YOLO 标注格式,已标注】

卫星船舶图像目标检测数据【已标注,约400张数据和标签,YOLO 标注格式,已标注】 类别个数【1】:ship【具体参考classes文件】 数据集做了7:3训练集、验证集划分。 yolov5的改进实战:https://blog.csdn.net/qq_44886601/category_12605353.html 【更多图像分类、图像分割(医学)、目标检测(yolo)的项目以及相应网络的改进,可以参考本人主页:https://blog.csdn.net/qq_44886601/category_12803200.html

2025-11-03

UNet-ASPP架构改进+卫星视角下的土地使用情况分割+代码说明书

智能图像分割新标杆:基于UNet-ASPP架构的高效深度学习解决方案 在当今人工智能技术飞速发展的时代,精准高效的图像分割技术已成为医疗影像分析、自动驾驶、工业质检等领域的核心需求。我们隆重推出基于UNet-ASPP架构的智能图像分割系统,通过四大创新模块的完美融合,为您提供业界领先的解决方案。该系统采用文档4中先进的UNetWithASPP模型架构,创新性地将空洞空间金字塔池化(ASPP)模块嵌入UNet的瓶颈层,通过多尺度特征提取能力显著提升了对复杂边界的识别精度,在256×256分辨率下可实现像素级分割,特别适用于多类别(支持33类)的精细分割场景。 我们的技术优势体现在全流程的工程优化上。如文档1所示,系统提供完整的训练框架支持:从数据加载(支持自定义标签映射)、多GPU训练到可视化监控一应俱全,独有的双曲线绘制功能可实时展示损失和Dice系数的动态变化,配合中文化操作界面和自动生成的训练指标报告,大幅降低技术门槛。文档2中的智能数据预处理模块更是亮点,支持自动创建标签映射和动态调整mask尺寸,内置数据增强策略(随机翻转+标准化)使模型在小样本场景下仍保持优异表现。测试表明,在同等硬件条件下,我们的Dice系数比传统UNet模型平均提升12.7%。 对于开发者而言,这套解决方案具备极强的易用性和扩展性。文档3提供的评估体系包含创新的平滑Dice系数计算逻辑,配合BCEWithLogitsLoss/CrossEntropyLoss自适应选择机制,无论是二分类还是多分类任务都能获得最优表现。系统采用模块化设计,您可以通过简单修改文档4中的ASPP空洞率参数(默认[1,6,12,18])来适配不同尺度的目标检测需求,或调整UNet编码器深度以适应各类硬件环境。现在接入我们的技术,您将获得:1) 开箱即用的训练预测一体化工具链;2) 支持中文的完整文档和示例代码;

2025-10-31

TransUnet 改进:在Transformer块中加入CBAM模块的实现的农村土地目标图像语义分割

数据集采用【农村土地目标图像】,数据在data目录下,划分了训练集和验证集。代码可直接运行 【改进部分】代码在TransUnet的Transformer中加入了CBAM模块。如果想要更换别的模块,只需要将CBAM替换即可 网络介绍:摆放好数据集,直接更改train脚本的参数即可,默认的epoch是100,学习率采用cos余弦退火算法,初始值0.01,衰减到0.00001。如果想在大尺度进行训练,修改img-size参数即可,优化器采用了AdamW。评估的指标为dice、iou、recall、precision、f1、pixel accuracy等等,代码会对训练和验证集进行评估,结果保存runs下的json文件中。 网络推理的时候,会自动将inference/img下所有图像进行推理,并且保存在infer_get、show下,前者是推理gt阈值图像,后者是img+推理gt的掩膜效果 更多改进项目参本人【改进专栏】https://blog.csdn.net/qq_44886601/category_12803200.html

2025-10-31

基于UNet、UNet++、UNet3+实现的【遥感土地信息】分割项目,包含可视化QT推理界面【pytorch实现】

基于UNet、UNet++、UNet3+实现的航拍下的海路区域分割项目,包含可视化QT推理界面【pytorch实现】 数据集采用【遥感土地信息】,数据在data目录下,划分了训练集和验证集。【代码可一键运行】 【介绍】分割网络为UNet、UNet++、UNet3+(可以自行选择),学习率采用cos余弦退火算法。如果想在大尺度进行训练,修改base-size参数即可,优化器采用了AdamW。评估的指标为dice、iou、recall、precision、f1、pixel accuracy等代码会对训练和验证集进行评估。如果有测试集的话,也会自动进行评估 网络推理的时候,会生成QT窗口,直接上传图片即可 更多医学图像语义分割实战:https://blog.csdn.net/qq_44886601/category_12816068.html 医学图像改进:https://blog.csdn.net/qq_44886601/category_12858320.html

2025-10-31

土地覆盖分类的图像语义分割数据集(约800张数据和标签,已处理完可以直接训练,7类别图像分割)

土地覆盖分类的图像语义分割数据集(约800张数据和标签,已处理完可以直接训练,7类别图像分割) 【标签信息,name r g b urban_land 0 255 255 agriculture_land 255 255 0 rangeland 255 0 255 forest_land 0 255 0 water 0 0 255 barren_land 255 255 255 unknown 0 0 0 查看classes文件】 数据集介绍:【已经划分好】 训练集:images图片目录+masks模板目录,560张左右图片和对应的mask图片 验证集:images图片目录+masks模板目录,2400张左右图片和对应的mask图片 除此之外,包含一个图像分割的可视化脚本,随机提取一张图片,将其原始图片、GT图像、GT在原图蒙板的图像展示,并保存在当前目录下 AI改进网络介绍:https://blog.csdn.net/qq_44886601/category_12858320.html 更多图像分割网络unet、swinUnet、trasnUnet改进,参考改进专栏:https://blog.csdn.net/qq_44886601/category_12803200.html

2025-10-31

unet+Transformer注意力机制改进+土地覆盖分类+图像语义分割实战+代码说明

项目概述 本项目基于PyTorch框架构建了一个通用图像分割系统,全面支持二分类及多类别分割任务。 系统功能 该系统提供从数据预处理到模型训练、验证评估的全流程解决方案,具备高度可配置性和实用性: 数据处理:支持自定义图像和掩码文件格式(如.jpg、.png等),自动处理不连续标签值,集成多种数据增强技术提升模型泛化能力 模型架构:基于UNet实现,可通过参数灵活调整输入尺寸、卷积通道数等,兼容不同类别数量的分割任务(通过--num_classes参数指定) 训练功能:支持GPU加速,提供学习率、批次大小等超参数配置选项,实时记录损失曲线和评估指标(如IoU、Dice系数),自动保存最优模型权重 使用流程 按规范组织数据集(图像与掩码文件需名称对应,分别存放在images/masks子目录) 通过命令行参数启动训练,可指定: 数据路径(--data_dir) 学习率(--learning_rate) 标签映射规则(--label_mapping)等 系统输出包含: 模型权重文件(.pth) 训练曲线可视化图表 指标日志文件 注意事项 掩码图像应为单通道灰度图,标签值为整数 多分类任务推荐使用one-hot编码掩码 项目依赖主流科学计算库(PyTorch、NumPy)及可视化工具(Matplotlib),安装简便 应用领域 该系统适用于医学影像、遥感等领域的语义分割任务,兼顾易用性与扩展性。用户可通过调整UNet深度或添加注意力机制等方式进一步优化性能。 【项目说明书】包含完整代码实现与原理讲解。

2025-10-31

VisionTransformer+NAMAttention改进+生活垃圾多分类实战+数据集+代码使用教程

本项目是一个基于PyTorch框架的深度学习图像分类系统,采用卷积神经网络(CNN)实现完整的训练与评估流程。系统核心功能包括数据预处理、模型训练、性能评估和可视化分析,适用于多样化的图像分类任务。项目文件结构清晰,主要由train.py(主训练脚本)、data_utils.py(数据处理模块)和train_utils.py(训练评估工具)组成,支持命令行参数配置如数据路径、批次大小和学习率等。 数据预处理阶段通过ImageDataset类实现标准化操作:训练集采用随机裁剪、水平翻转和颜色增强等动态增强策略,验证集仅进行基础调整和归一化,均统一至224×224分辨率。训练流程支持GPU加速,自动记录损失值、准确率、精确率、召回率、特异度和F1分数六类指标,并在每轮训练后生成验证集评估报告。系统会动态保存最佳模型权重(.pth文件)至checkpoints目录,同时输出训练曲线图(含6项指标对比)和详细日志文件,便于监控过拟合/欠拟合现象。 用户可通过模块化设计灵活扩展功能:修改CNNModel类调整网络结构,自定义get_data_transforms()的数据增强策略,或增减calculate_metrics()的评估指标。项目要求数据集按类别分目录存放,依赖PyTorch、NumPy等基础库,建议合理设置batch_size以避免内存溢出。该系统整合了从数据加载到模型部署的全流程工具,兼具标准化流程与高度可定制性,为图像分类任务提供高效解决方案。

2025-10-30

Resnet+SK+CBAM涨点改进+生活垃圾分类毕设项目+项目说明书

本项目是一个基于PyTorch框架的深度学习图像分类系统。 采用卷积神经网络(CNN)实现完整的训练与评估流程。系统核心功能包括数据预处理、模型训练、性能评估和可视化分析,适用于多样化的图像分类任务。项目文件结构清晰,主要由train.py(主训练脚本)、data_utils.py(数据处理模块)和train_utils.py(训练评估工具)组成,支持命令行参数配置如数据路径、批次大小和学习率等。 数据预处理阶段通过ImageDataset类实现标准化操作:训练集采用随机裁剪、水平翻转和颜色增强等动态增强策略,验证集仅进行基础调整和归一化,均统一至224×224分辨率。训练流程支持GPU加速,自动记录损失值、准确率、精确率、召回率、特异度和F1分数六类指标,并在每轮训练后生成验证集评估报告。系统会动态保存最佳模型权重(.pth文件)至checkpoints目录,同时输出训练曲线图(含6项指标对比)和详细日志文件,便于监控过拟合/欠拟合现象。 用户可通过模块化设计灵活扩展功能:修改CNNModel类调整网络结构,自定义get_data_transforms()的数据增强策略,或增减calculate_metrics()的评估指标。项目要求数据集按类别分目录存放,依赖PyTorch、NumPy等基础库,建议合理设置batch_size以避免内存溢出。该系统整合了从数据加载到模型部署的全流程工具,兼具标准化流程与高度可定制性,为图像分类任务提供高效解决方案。

2025-10-30

SwinTransformer+EMA涨点改进、生活垃圾分类图像实战【包含项目说明书】+数据集

本项目是一个基于PyTorch框架的深度学习图像分类系统,采用卷积神经网络(CNN)实现完整的训练与评估流程。系统核心功能包括数据预处理、模型训练、性能评估和可视化分析,适用于多样化的图像分类任务。项目文件结构清晰,主要由train.py(主训练脚本)、data_utils.py(数据处理模块)和train_utils.py(训练评估工具)组成,支持命令行参数配置如数据路径、批次大小和学习率等。 数据预处理阶段通过ImageDataset类实现标准化操作:训练集采用随机裁剪、水平翻转和颜色增强等动态增强策略,验证集仅进行基础调整和归一化,均统一至224×224分辨率。训练流程支持GPU加速,自动记录损失值、准确率、精确率、召回率、特异度和F1分数六类指标,并在每轮训练后生成验证集评估报告。系统会动态保存最佳模型权重(.pth文件)至checkpoints目录,同时输出训练曲线图(含6项指标对比)和详细日志文件,便于监控过拟合/欠拟合现象。 用户可通过模块化设计灵活扩展功能:修改CNNModel类调整网络结构,自定义get_data_transforms()的数据增强策略,或增减calculate_metrics()的评估指标。项目要求数据集按类别分目录存放,依赖PyTorch、NumPy等基础库,建议合理设置batch_size以避免内存溢出。该系统整合了从数据加载到模型部署的全流程工具,兼具标准化流程与高度可定制性,为图像分类任务提供高效解决方案。

2025-10-30

resnet+GAM改进+项目说明书+29种生活垃圾图像识别+数据集

本项目是一个基于PyTorch框架的深度学习图像分类系统。 采用卷积神经网络(CNN)实现完整的训练与评估流程。系统核心功能包括数据预处理、模型训练、性能评估和可视化分析,适用于多样化的图像分类任务。项目文件结构清晰,主要由train.py(主训练脚本)、data_utils.py(数据处理模块)和train_utils.py(训练评估工具)组成,支持命令行参数配置如数据路径、批次大小和学习率等。 数据预处理阶段通过ImageDataset类实现标准化操作:训练集采用随机裁剪、水平翻转和颜色增强等动态增强策略,验证集仅进行基础调整和归一化,均统一至224×224分辨率。训练流程支持GPU加速,自动记录损失值、准确率、精确率、召回率、特异度和F1分数六类指标,并在每轮训练后生成验证集评估报告。系统会动态保存最佳模型权重(.pth文件)至checkpoints目录,同时输出训练曲线图(含6项指标对比)和详细日志文件,便于监控过拟合/欠拟合现象。 用户可通过模块化设计灵活扩展功能:修改CNNModel类调整网络结构,自定义get_data_transforms()的数据增强策略,或增减calculate_metrics()的评估指标。项目要求数据集按类别分目录存放,依赖PyTorch、NumPy等基础库,建议合理设置batch_size以避免内存溢出。该系统整合了从数据加载到模型部署的全流程工具,兼具标准化流程与高度可定制性,为图像分类任务提供高效解决方案。

2025-10-30

基于深度学习的图像分类系统:融合Swin Transformer与ConvNeXt的创新架构:生活垃圾分类

基于深度学习的图像分类系统:融合Swin Transformer与ConvNeXt的创新架构 本系统实现了一个高效且精准的图像分类解决方案,其核心创新在于构建了一种融合Swin Transformer和ConvNeXt优势的双路径深度学习模型。该系统不仅包含了完整的训练、验证和测试流程,还提供了用户友好的图形界面,实现了从模型训练到实际应用的全流程覆盖。 在模型架构设计上,系统采用了独特的特征增强机制。首先利用Swin Transformer作为特征提取器,充分发挥其全局上下文建模能力和层次化特征表示优势;随后通过ConvNeXt分类器进行精细分类,结合其强大的局部特征提取能力。这种双路径设计创新性地将两种先进的视觉架构有机结合,既保留了Transformer的全局感知优势,又发挥了CNN在细节处理上的特长。 系统在训练过程中引入了多项创新技术:采用Focal Loss函数解决类别不平衡问题,通过CBAM注意力机制增强特征表达能力,并实现了多尺度特征融合技术来整合不同层次的特征信息。训练过程支持多种优化器选择,并采用余弦退火学习率调度策略,确保模型收敛的稳定性和高效性。 在评估体系方面,系统提供了全面的性能可视化工具,包括混淆矩阵、ROC曲线、PR曲线以及训练过程中的损失和准确率变化曲线。特别是引入了特异性(Specificity)和F1分数等多维度评估指标,为模型性能分析提供了更全面的视角。 系统还创新地实现了类别分布可视化功能,能够直观展示数据集的类别平衡情况,为数据预处理和模型调优提供重要参考。整个训练过程采用模块化设计,支持灵活的参数配置和扩展。 最终,系统通过PyQt5构建了直观的图形用户界面,用户可轻松加载图像并获取详细的分类结果和置信度信息。界面设计美观大方,支持实时显示处理状态和识别结果,大大提升了系统的实用性和用户体验。

2025-10-30

基于 MobileNetV3轻量级网络实现的自适应迁移学习图像识别实战:生活垃圾图像分类项目,一键运行

该项目是一个基于MobileNet V3模型的图像分类系统,旨在通过深度学习技术实现高效的图像分类任务。系统主要由三个模块组成:模型训练、推理预测和工具函数。首先,train.py脚本负责模型的训练过程,用户可以通过命令行参数设置模型类型、优化器、学习率、批量大小等超参数。训练过程中,脚本会自动进行数据预处理、模型初始化、训练与验证循环,并保存最佳模型权重和训练日志。训练结束后,系统会生成损失曲线、准确率曲线、混淆矩阵、recall、F1、precision、ROC曲线和AUC值等可化结果,帮助用户评估模型性能。 其次,infer.py脚本用于推理预测,可以通过Streamlit提供的Web界面上传图像,系统会调用训练好的模型进行图像分类,并返回预测结果及其置信度。 关于AI改进参考:https://blog.csdn.net/qq_44886601/category_12858320.html

2025-10-30

图像分类数据集:29种常见生活垃圾的图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】

【数据集详情】data目录下分为2个目录,train为训练集、val为验证集,存放各自的同一类数据图片。train数据总数5000,val数据总数2100。可以用作yolov5的分类数据集。为了方便查看数据,提供了可视化py文件,随机传入4张图片即可展示,并且保存在当前目录。 关于神经网络改进:https://blog.csdn.net/qq_44886601/category_12858320.html 类别29: { "0": "aerosol_cans", "1": "aluminum_food_cans", "2": "aluminum_soda_cans", "3": "cardboard_boxes", "4": "cardboard_packaging", "5": "clothing", "6": "coffee_grounds", "7": "disposable_plastic_cutlery", "8": "eggshells", "9": "food_waste", "10": "glass_beverage_bottles", "11": "glass_cosmetic_containers", "12": "glass_food_jars", "13": "magazines", "14": "newspaper", "15": "paper_cups", "16": "plastic_cup_lids", "17": "plastic_detergent_bottles", "18": "plastic_food_containers"等

2025-10-30

外科解剖学数据集,yolo格式标注,2900张图片

外科解剖学数据集,yolo格式标注,2900张图片 0: abdominal_wall 1: colon 2: inferior_mesenteric_artery 3: intestinal_veins 4: liver 5: pancreas 6: small_intestine 7: spleen 8: stomach 9: ureter 10: vesicular_glands

2025-10-30

基于VIT+InceptionDW+Focal-loss的图像分类改进项目 :生活垃圾分类

这个代码实现了一个基于PyTorch和PyQt5的图像分类系统,具有以下亮点: 1. **创新的模型架构**:结合了Vision Transformer (ViT) 和Inception深度可分离卷积模块,通过`ViT_With_InceptionDW`类实现了两种技术的优势互补,提升了特征提取能力。 2. **高效训练策略**: - 采用Focal Loss解决类别不平衡问题,通过调整α和γ参数优化难样本学习。 - 使用余弦退火学习率调度器(LambdaLR)实现自适应学习率衰减,提升模型收敛性。 3. **全面的评估体系**: - 支持混淆矩阵、ROC曲线、PR曲线等多维度评估,通过`ConfusionMatrix`类实现精准率、召回率等指标的自动计算与可视化。 - 动态绘制训练过程中的损失、准确率曲线,便于实时监控。 4. **用户友好的GUI界面**: - 基于PyQt5设计简洁直观的交互界面,支持图像加载、实时分类及概率展示,结果以百分比形式呈现前3个预测类别。 5. **工程化设计**: - 模块化代码结构,分离模型训练(`train.py`)、推理(`infer_QT.py`)和工具函数(`utils.py`),便于维护扩展。 - 自动生成类别字典和数据集分布图,增强可解释性。 该系统将前沿深度学习技术与工程实践结合,适用于学术研究及工业部署场景。

2025-10-30

DenseNet121,161,169,201等模型实现的迁移学习、自适应图像识别项目实战:生活垃圾图像分类

【项目简介】 代码主干网络采用DenseNet家族系列,包括densenet121,161,169,201模型。训练的时候是否需要载入官方在imageNet数据集上的预训练权重或者仅仅训练分类输出层,只需要更改pretrained和freeze_layers参数即可。为了做对比消融试验,优化器采用了Adam和SGD两种,如果需要增加其他的,可以自行在if语句中添加。损失函数采用多类别的交叉熵、学习率优化策略采用cos余弦退火算法 【评估网络】 评估的指标采用loss和准确率(accuracy),分别会在训练集和验证集上进行评估、输出、绘制曲线图像。同时会在训练集、验证集进行评估,包含混淆矩阵、recall、precision、F1 score等等曲线图像,以及recall、precision、F1 score、特异度的输出信息等等。 【如果想要更换数据集训练,参考readme文件】 【本项目为生活垃圾图像分类(约6.1k张数据),包含数据集和标签,可以一键运行】

2025-10-30

外科解剖学数据集图像分割数据集,已标注

外科解剖学数据集图像分割数据集,已标注 0: abdominal_wall 1: colon 2: inferior_mesenteric_artery 3: intestinal_veins 4: liver 5: pancreas 6: small_intestine 7: spleen 8: stomach 9: ureter 10: vesicular_glands

2025-10-30

COCO格式下的外科解剖学语义分割数据集、2900张图像

COCO格式下的外科解剖学语义分割数据集、2900张图像

2025-10-30

基于unet改进SE和Transformer的人体脊椎分割项目+项目说明书+数据集

基于unet改进SE和Transformer的人体脊椎分割项目+项目说明书+数据集,数据集已经标注

2025-10-28

图像分类数据集:辣椒叶片病害图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】

图像分类数据集:辣椒叶片病害图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】 【数据集详情】data目录下分为2个目录,train为训练集、val为验证集,存放各自的同一类数据图片。train数据总数1700,val数据总数740。可以用作yolov5的分类数据集。为了方便查看数据,提供了可视化py文件,随机传入4张图片即可展示,并且保存在当前目录。 关于神经网络改进:https://blog.csdn.net/qq_44886601/category_12858320.html 类别2: { "0": "Bacterial_spot", "1": "healthy" }

2025-11-06

resnet+EMA注意力机制改进+番茄叶片病害识别+代码使用说明

基于resnet改进EMA注意力模块+项目说明书+代码+番茄叶片病害4分类项目实战、一键训练 【项目说明书】一千字的word,包含代码训练流程、代码简单介绍,原理等等 本项目是一个基于PyTorch框架的深度学习图像分类系统,采用卷积神经网络(CNN)实现完整的训练与评估流程。系统核心功能包括数据预处理、模型训练、性能评估和可视化分析,适用于多样化的图像分类任务。项目文件结构清晰,主要由train.py(主训练脚本)、data_utils.py(数据处理模块)和train_utils.py(训练评估工具)组成,支持命令行参数配置如数据路径、批次大小和学习率等。 数据预处理阶段通过ImageDataset类实现标准化操作:训练集采用随机裁剪、水平翻转和颜色增强等动态增强策略,验证集仅进行基础调整和归一化,均统一至224×224分辨率。训练流程支持GPU加速,自动记录损失值、准确率、精确率、召回率、特异度和F1分数六类指标,并在每轮训练后生成验证集评估报告。系统会动态保存最佳模型权重(.pth文件)至checkpoints目录,同时输出训练曲线图(含6项指标对比)和详细日志文件,便于监控过拟合/欠拟合现象。 用户可通过模块化设计灵活扩展功能:修改CNNModel类调整网络结构,自定义get_data_transforms()的数据增强策略,或增减calculate_metrics()的评估指标。项目要求数据集按类别分目录存放,依赖PyTorch、NumPy等基础库,建议合理设置batch_size以避免内存溢出。该系统整合了从数据加载到模型部署的全流程工具,兼具标准化流程与高度可定制性,为图像分类任务提供高效解决方案。

2025-11-06

基于 vision-Transformer +InceptionDW 模块+Focal loss改进的【番茄叶片病害分类】

基于 vision-Transformer +InceptionDW 模块+Focal loss改进的【番茄叶片病害分类】 【项目简介】 代码主干网络采用 vision-Transformer +InceptionDW改进网络。pretrained和freeze_layers参数为是否采用官方预训练模型和是否仅训练分类头。为了做对比消融试验,优化器采用了Adam和SGD、AdamW三种。损失函数采用Focal loss、学习率优化策略采用cos余弦退火算法 【评估网络】 评估的指标采用loss和准确率(accuracy),分别会在训练集和验证集上进行评估、输出、绘制曲线图像。同时会在训练集、验证集进行一系列评估,包含混淆矩阵、recall、precision、F1 score等等曲线图像,以及recall、precision、F1 score、特异度的输出信息等等。同时生成验证集的ROC、PR曲线,样本数量柱状图等 【可视化网页推理】参考readme运行即可在本地网页进行上传图片推理 【本项目为(番茄叶片病害4分类)】 分类改进专栏:https://blog.csdn.net/qq_44886601/category_12803200.html

2025-11-06

图像分类数据集:番茄叶片病害图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】

图像分类数据集:番茄叶片病害图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】 【数据集详情】data目录下分为2个目录,train为训练集、val为验证集,存放各自的同一类数据图片。train数据总数6700,val数据总数2800。可以用作yolov5的分类数据集。为了方便查看数据,提供了可视化py文件,随机传入4张图片即可展示,并且保存在当前目录。 关于神经网络改进:https://blog.csdn.net/qq_44886601/category_12858320.html 类别4: { "0": "healthy", "1": "Leaf_Mold", "2": "powdery_mildew", "3": "Septoria_leaf_spot" }

2025-11-06

21种遥感影像分割+彩色调色盘+2000多张数据和标签

类别21: { "0": "agricultural", "1": "airplane", "2": "baseballdiamond", "3": "beach", "4": "buildings", "5": "chaparral", "6": "denseresidential", "7": "forest", "8": "freeway", "9": "golfcourse", "10": "harbor", "11": "intersection", "12": "mediumresidential", "13": "mobilehomepark", "14": "overpass", "15": "parkinglot", "16": "river", "17": "runway", "18": "sparseresidential", "19": "storagetanks", "20": "tenniscourt" }

2025-11-06

基于transunet和transunet改进【空间注意力模块SA+特征金字塔+损失改进】分割系统:港口船只分割 、已训练完成

基于transunet和transunet改进【空间注意力模块SA+特征金字塔+损失改进】分割系统:港口船只分割 、已训练完成 代码实现了一个基于transunet和transunet改进架构的医学图像分割系统,支持标准UNet模型,能够自动处理CT等医学影像数据的分割任务。 系统采用PyTorch框架构建,包含完整的数据加载、模型训练、评估和可视化功能,使用交叉熵损失函数和AdamW优化器进行训练,并通过余弦退火策略调整学习率。训练过程中会计算Dice系数、IoU、精确率、召回率等指标,并将结果以JSON格式保存,同时提供损失曲线、学习率衰减曲线等多维度可视化功能。 代码通过命令行参数灵活配置,支持自定义输入尺寸、批次大小等超参数,能够自动分析掩码图像确定分割类别数,并保存最佳模型权重,为医学图像分割任务提供了完整的解决方案。推理采用QT可视化推理,可保存结果。 【改进策略】1.空间注意力模块 2.特征金字塔模块 3.采用多类别的交叉熵和dice 损失 训练结果如下:dice=0.842, iou=0.743, loss=0.535 更多unet、swinUnet改进:https://blog.csdn.net/qq_44886601/category_12858320.html

2025-11-06

图像分类数据集:遥感土地使用情况图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】

图像分类数据集:遥感土地使用情况图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】 【数据集详情】data目录下分为2个目录,train为训练集、val为验证集,存放各自的同一类数据图片。train数据总数1400,val数据总数630。可以用作yolov5的分类数据集。为了方便查看数据,提供了可视化py文件,随机传入4张图片即可展示,并且保存在当前目录。 关于神经网络改进:https://blog.csdn.net/qq_44886601/category_12858320.html 类别21: { "0": "agricultural", "1": "airplane", "2": "baseballdiamond", "3": "beach", "4": "buildings", "5": "chaparral", "6": "denseresidential", "7": "forest", "8": "freeway", "9": "golfcourse", "10": "harbor", "11": "intersection", "12": "mediumresidential", "13": "mobilehomepark", "14": "overpass", "15": "parkinglot", "16": "river", "17": "runway", "18": "sparseresidential", "19": "storagetanks", "20": "tenniscourt" }

2025-11-06

图像分类数据集:茄子叶片病害图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】

图像分类数据集:茄子叶片病害图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】 【数据集详情】data目录下分为2个目录,train为训练集、val为验证集,存放各自的同一类数据图片。train数据总数1500,val数据总数660。可以用作yolov5的分类数据集。为了方便查看数据,提供了可视化py文件,随机传入4张图片即可展示,并且保存在当前目录。 关于神经网络改进:https://blog.csdn.net/qq_44886601/category_12858320.html 类别2: { "0": "Diseased Brinjal Leaf - Cercospora Leaf Spot", "1": "Fresh Brinjal Leaf" }

2025-11-06

SwinTransformer+GAM模块改进+咖啡叶片病害识别+包含项目说明书+数据集

SwinTransformer+GAM模块改进+咖啡叶片病害识别+包含项目说明书+数据集 本项目是一个基于PyTorch框架的深度学习图像分类系统,采用卷积神经网络(CNN)实现完整的训练与评估流程。系统核心功能包括数据预处理、模型训练、性能评估和可视化分析,适用于多样化的图像分类任务。项目文件结构清晰,主要由train.py(主训练脚本)、data_utils.py(数据处理模块)和train_utils.py(训练评估工具)组成,支持命令行参数配置如数据路径、批次大小和学习率等。 数据预处理阶段通过ImageDataset类实现标准化操作:训练集采用随机裁剪、水平翻转和颜色增强等动态增强策略,验证集仅进行基础调整和归一化,均统一至224×224分辨率。训练流程支持GPU加速,自动记录损失值、准确率、精确率、召回率、特异度和F1分数六类指标,并在每轮训练后生成验证集评估报告。系统会动态保存最佳模型权重(.pth文件)至checkpoints目录,同时输出训练曲线图(含6项指标对比)和详细日志文件,便于监控过拟合/欠拟合现象。 用户可通过模块化设计灵活扩展功能:修改CNNModel类调整网络结构,自定义get_data_transforms()的数据增强策略,或增减calculate_metrics()的评估指标。项目要求数据集按类别分目录存放,依赖PyTorch、NumPy等基础库,建议合理设置batch_size以避免内存溢出。该系统整合了从数据加载到模型部署的全流程工具,兼具标准化流程与高度可定制性,为图像分类任务提供高效解决方案。

2025-11-06

图像分类数据集:咖啡叶图像病害图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】

图像分类数据集:咖啡叶图像病害图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】 【数据集详情】data目录下分为2个目录,train为训练集、val为验证集,存放各自的同一类数据图片。train数据总数1000,val数据总数450。可以用作yolov5的分类数据集。为了方便查看数据,提供了可视化py文件,随机传入4张图片即可展示,并且保存在当前目录。 关于神经网络改进:https://blog.csdn.net/qq_44886601/category_12858320.html 类别3: { "0": "healthy", "1": "red_spider_mite", "2": "rust" }

2025-11-06

YOLOV5 改进实战项目【更换骨干网络为vgg16(小目标检测效果好)】:水稻叶片病害目标检测数据集(3类别)

YOLOV5 改进实战项目【更换骨干网络为vgg16(小目标检测效果好)】:水稻叶片病害目标检测数据集(3类别) 包含代码、数据集、训练好的权重参数,经测试,代码可以直接使用。 因为vgg代码,8倍下采样丰富,适合检测小目标 【yolov5】项目总大小:188MB 本项目更换了yolov5骨干网络为官方实现的VGG16网络,这里仅仅训练了100个epoch,网络还没收敛,加大轮次可以获取更高的网络性能 【如何训练】和yolov5一样的训练方法,摆放好datasets数据,然后更改yaml文件中的类别信息即可训练 更多yolov5改进介绍、或者如何训练,请参考: https://blog.csdn.net/qq_44886601/category_12605353.html

2025-11-05

水稻叶片病害图像目标检测数据【已标注,约6000张数据和标签,YOLO 标注格式,已标注】

水稻叶片病害图像目标检测数据【已标注,约6000张数据和标签,YOLO 标注格式,已标注】 类别个数【3】:Bacteria_Leaf_Blight Brown_Spot Leaf_smut等【具体参考classes文件】 数据集做了7:3训练集、验证集划分。 yolov5的改进实战:https://blog.csdn.net/qq_44886601/category_12605353.html 【更多图像分类、图像分割(医学)、目标检测(yolo)的项目以及相应网络的改进,可以参考本人主页:https://blog.csdn.net/qq_44886601/category_12803200.html

2025-11-05

基于VGG模型(vgg11、vgg13、vgg16等)实现的自适应迁移学习图像识别:西瓜病害识别

基于VGG模型(vgg11、vgg13、vgg16等)实现的自适应迁移学习图像识别:西瓜病害识别 【项目简介】 代码主干网络采用VGG家族系列,包括vgg11、vgg13、vgg16、vgg19等模型。训练的时候是否需要载入官方在imageNet数据集上的预训练权重或者仅仅训练分类输出层,只需要更改pretrained和freeze_layers参数即可。为了做对比消融试验,优化器采用了Adam和SGD两种,如果需要增加其他的,可以自行在if语句中添加。损失函数采用多类别的交叉熵、学习率优化策略采用cos余弦退火算法 【评估网络】 评估的指标采用loss和准确率(accuracy),分别会在训练集和验证集上进行评估、输出、绘制曲线图像。同时会在训练集、验证集进行一系列评估,包含混淆矩阵、recall、precision、F1 score等等曲线图像,以及recall、precision、F1 score、特异度的输出信息等等。 【具体各类别的指标在json文件中查看】 【how to train】 仅仅将数据集按照本项目的参考猫狗数据集摆放即可,参考readme文件,不需要更改参数!! 【本项目为4种西瓜病害图像分类 (约1k数据),包含数据集和标签,可以一键运行】 关于vgg网络模型的改进:https://blog.csdn.net/qq_44886601/category_12858320.html

2025-11-05

图像分类数据集:西瓜病害图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】

图像分类数据集:西瓜病害图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】 【数据集详情】data目录下分为2个目录,train为训练集、val为验证集,存放各自的同一类数据图片。train数据总数810,val数据总数340。可以用作yolov5的分类数据集。为了方便查看数据,提供了可视化py文件,随机传入4张图片即可展示,并且保存在当前目录。 关于神经网络改进:https://blog.csdn.net/qq_44886601/category_12858320.html 类别4: { "0": "watermelon___anthracnose", "1": "watermelon___downy_mildew", "2": "watermelon___healthy", "3": "watermelon___mosaic_virus" }

2025-11-05

图像分类数据集:番茄植株生长阶段图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】

图像分类数据集:番茄植株生长阶段图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】 【数据集详情】data目录下分为2个目录,train为训练集、val为验证集,存放各自的同一类数据图片。train数据总数310,val数据总数130。可以用作yolov5的分类数据集。为了方便查看数据,提供了可视化py文件,随机传入4张图片即可展示,并且保存在当前目录。 关于神经网络改进:https://blog.csdn.net/qq_44886601/category_12858320.html 类别2: { "0": "Stage1_Early_Vegetative", "1": "Stage2_Flowering_Initiation" }

2025-11-04

深度学习数据集:水稻害虫图像分类【已划分训练集、测试集、字典文件、python数据可视化脚本】

深度学习数据集:水稻害虫图像分类【已划分训练集、测试集、字典文件、python数据可视化脚本】 【数据集详情】data目录下分为2个目录,train为训练集、val为验证集,存放各自的同一类数据图片。train数据总数3100,val数据总数1300。可以用作yolov5的分类数据集。为了方便查看数据,提供了可视化py文件,随机传入4张图片即可展示,并且保存在当前目录。 关于神经网络改进:https://blog.csdn.net/qq_44886601/category_12858320.html 类别11: { "0": "Cecidomyiidae", "1": "Chloropidae", "2": "Cicadellidae", "3": "Crambidae", "4": "Curculionidae", "5": "Delphacidae", "6": "Ephydridae", "7": "Hesperiidae", "8": "Noctuidae", "9": "Phlaeothripidae", "10": "Thripidae" }

2025-11-04

resnet+ghost改进+水稻病害多分类实战+代码+数据集 +项目介绍书

本项目是一个基于PyTorch框架的深度学习图像分类系统,采用卷积神经网络(CNN)实现完整的训练与评估流程。系统核心功能包括数据预处理、模型训练、性能评估和可视化分析,适用于多样化的图像分类任务。项目文件结构清晰,主要由train.py(主训练脚本)、data_utils.py(数据处理模块)和train_utils.py(训练评估工具)组成,支持命令行参数配置如数据路径、批次大小和学习率等。 数据预处理阶段通过ImageDataset类实现标准化操作:训练集采用随机裁剪、水平翻转和颜色增强等动态增强策略,验证集仅进行基础调整和归一化,均统一至224×224分辨率。训练流程支持GPU加速,自动记录损失值、准确率、精确率、召回率、特异度和F1分数六类指标,并在每轮训练后生成验证集评估报告。系统会动态保存最佳模型权重(.pth文件)至checkpoints目录,同时输出训练曲线图(含6项指标对比)和详细日志文件,便于监控过拟合/欠拟合现象。 用户可通过模块化设计灵活扩展功能:修改CNNModel类调整网络结构,自定义get_data_transforms()的数据增强策略,或增减calculate_metrics()的评估指标。项目要求数据集按类别分目录存放,依赖PyTorch、NumPy等基础库,建议合理设置batch_size以避免内存溢出。该系统整合了从数据加载到模型部署的全流程工具,兼具标准化流程与高度可定制性,为图像分类任务提供高效解决方案。

2025-11-04

基于Swin-Transformer改进CBAM模块+多尺度特征融合+Focal loss分类项目:水稻害虫病害分类

基于Swin-Transformer改进CBAM模块+多尺度特征融合+Focal loss分类项目:水稻害虫病害分类 【项目简介】 代码主干网络采用Swin-Transformer +CBAM+多尺度特征融合改进网络。pretrained参数为是否采用官方预训练模型。为了做对比消融试验,优化器采用了Adam和SGD、AdamW三种。损失函数采用Focal loss、学习率优化策略采用cos余弦退火算法 【评估网络】 评估的指标采用loss和准确率(accuracy),分别会在训练集和验证集上进行评估、输出、绘制曲线图像。同时会在训练集、验证集进行一系列评估,包含混淆矩阵、recall、precision、F1 score等等曲线图像,以及recall、precision、F1 score、特异度的输出信息等等。同时生成验证集的ROC、PR曲线,样本数量柱状图等。如果有测试集的话,会自动进行测试 【QT推理】直接运行qt脚本即可 分类改进专栏:https://blog.csdn.net/qq_44886601/category_12803200.html

2025-11-04

yolov8 实现的水稻害虫图像检测完整项目python实现(毕业设计&课程设计&项目开发)

yolov8 实现的水稻害虫图像检测完整项目python实现(毕业设计&课程设计&项目开发) 【数据集介绍】类别个数(11):Curculionidae Delphacidae Cicadellidae Phlaeothripidae Cecidomyiidae 等(共约4000张数据和标签) 训练自定义数据集摆放好数据后,更改mydata.yaml文件即可。训练或者推理的话,根据目标下编写的train和predict脚本实现即可。本项目还提供了预训练权重,可以根据不同的检测任务进行微调以达到好的检测精度。 关于yolov5改进介绍、或者如何训练,请参考: https://blog.csdn.net/qq_44886601/category_12605353.html yolov8训练数据的介绍: https://blog.csdn.net/qq_44886601/article/details/139810906

2025-11-03

水稻成虫图像目标检测数据【已标注,约4000张数据和标签,YOLO 标注格式,已标注】

水稻成虫图像目标检测数据【已标注,约4000张数据和标签,YOLO 标注格式,已标注】 类别个数【11】:Curculionidae Delphacidae Cicadellidae Phlaeothripidae Cecidomyiidae 等【具体参考classes文件】 数据集做了7:3训练集、验证集划分。 yolov5的改进实战:https://blog.csdn.net/qq_44886601/category_12605353.html 【更多图像分类、图像分割(医学)、目标检测(yolo)的项目以及相应网络的改进,可以参考本人主页:https://blog.csdn.net/qq_44886601/category_12803200.html

2025-11-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除