目录
启发式算法
几种常见的优化算法
- 遗传算法
- 粒子群优化
- 模拟退火
# 先运行之前预处理好的代码
import pandas as pd
import pandas as pd #用于数据处理和分析,可处理表格数据。
import numpy as np #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt #用于绘制各种类型的图表
import seaborn as sns #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei'] # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
data = pd.read_csv('data.csv') #读取数据
# 先筛选字符串变量
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {
'Own Home': 1,
'Rent': 2,
'Have Mortgage': 3,
'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)
# Years in current job 标签编码
years_in_job_mapping = {
'< 1 year': 1,
'1 year': 2,
'2 years': 3,
'3 years': 4,
'4 years': 5,
'5 years': 6,
'6 years': 7,
'7 years': 8,
'8 years': 9,
'9 years': 10,
'10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)
# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
if i not in data2.columns:
list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名
# Term 0 - 1 映射
term_mapping = {
'Short Term': 0,
'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist() #把筛选出来的列名转换成列表
# 连续特征用中位数补全
for feature in continuous_features:
mode_value = data[feature].mode()[0] #获取该列的众数。
data[feature].fillna(mode_value, inplace=True) #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。
# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1) # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 80%训练集,20%测试集
from sklearn.ensemble import RandomForestClassifier #随机森林分类器
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
warnings.filterwarnings("ignore") # 忽略所有警告信息
# --- 1. 默认参数的随机森林 ---
# 评估基准模型,这里确实不需要验证集
print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---")
import time # 这里介绍一个新的库,time库,主要用于时间相关的操作,因为调参需要很长时间,记录下会帮助后人知道大概的时长
start_time = time.time() # 记录开始时间
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train) # 在训练集上训练
rf_pred = rf_model.predict(X_test) # 在测试集上预测
end_time = time.time() # 记录结束时间
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\n默认随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred))
print("默认随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))
输出结果:
--- 1. 默认参数随机森林 (训练集 -> 测试集) --- 训练与预测耗时: 0.9480 秒 默认随机森林 在测试集上的分类报告: precision recall f1-score support 0 0.77 0.97 0.86 1059 1 0.79 0.30 0.43 441 accuracy 0.77 1500 macro avg 0.78 0.63 0.64 1500 weighted avg 0.77 0.77 0.73 1500 默认随机森林 在测试集上的混淆矩阵: [[1023 36] [ 309 132]]
一、核心思想
- 这些启发式算法都是优化器。你的目标是找到一组超参数,让你的机器学习模型在某个指标(比如验证集准确率)上表现最好。
- 这个过程就像在一个复杂的地形(参数空间)上寻找最高峰(最佳性能)。
- 启发式算法就是一群聪明的“探险家”,他们用不同的策略(模仿自然、物理现象等)来寻找这个最高峰,而不需要知道地形每一处的精确梯度(导数)。
二、遗传算法
- 灵感来源: 生物进化,达尔文的“适者生存”。
- 简单理解: 把不同的超参数组合想象成一群“个体”。表现好的个体(高验证分)更有机会“繁殖”(它们的参数组合会被借鉴和混合),并可能发生“变异”(参数随机小改动),产生下一代;表现差的个体逐渐被淘汰。一代代下去,种群整体就会越来越适应环境(找到更好的超参数)。
- 应用感觉: 像是在大范围“撒网”搜索,通过优胜劣汰和随机变动逐步逼近最优解,适合参数空间很大、很复杂的情况。
# pip install deap -i https://pypi.tuna.tsinghua.edu.cn/simple
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.metrics import classification_report, confusion_matrix
import warnings
warnings.filterwarnings("ignore")
import time
from deap import base, creator, tools, algorithms # DEAP是一个用于遗传算法和进化计算的Python库
import random
import numpy as np
# --- 2. 遗传算法优化随机森林 ---
print("\n--- 2. 遗传算法优化随机森林 (训练集 -> 测试集) ---")
# 定义适应度函数和个体类型
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
# 定义超参数范围
n_estimators_range = (50, 200)
max_depth_range = (10, 30)
min_samples_split_range = (2, 10)
min_samples_leaf_range = (1, 4)
# 初始化工具盒
toolbox = base.Toolbox()
# 定义基因生成器
toolbox.register("attr_n_estimators", random.randint, *n_estimators_range)
toolbox.register("attr_max_depth", random.randint, *max_depth_range)
toolbox.register("attr_min_samples_split", random.randint, *min_samples_split_range)
toolbox.register("attr_min_samples_leaf", random.randint, *min_samples_leaf_range)
# 定义个体生成器
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_n_estimators, toolbox.attr_max_depth,
toolbox.attr_min_samples_split, toolbox.attr_min_samples_leaf), n=1)
# 定义种群生成器
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
# 定义评估函数
def evaluate(individual):
n_estimators, max_depth, min_samples_split, min_samples_leaf = individual
model = RandomForestClassifier(n_estimators=n_estimators,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
return accuracy,
# 注册评估函数
toolbox.register("evaluate", evaluate)
# 注册遗传操作
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutUniformInt, low=[n_estimators_range[0], max_depth_range[0],
min_samples_split_range[0], min_samples_leaf_range[0]],
up=[n_estimators_range[1], max_depth_range[1],
min_samples_split_range[1], min_samples_leaf_range[1]], indpb=0.1)
toolbox.register("select", tools.selTournament, tournsize=3)
# 初始化种群
pop = toolbox.population(n=20)
# 遗传算法参数
NGEN = 10
CXPB = 0.5
MUTPB = 0.2
start_time = time.time()
# 运行遗传算法
for gen in range(NGEN):
offspring = algorithms.varAnd(pop, toolbox, cxpb=CXPB, mutpb=MUTPB)
fits = toolbox.map(toolbox.evaluate, offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
pop = toolbox.select(offspring, k=len(pop))
end_time = time.time()
# 找到最优个体
best_ind = tools.selBest(pop, k=1)[0]
best_n_estimators, best_max_depth, best_min_samples_split, best_min_samples_leaf = best_ind
print(f"遗传算法优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", {
'n_estimators': best_n_estimators,
'max_depth': best_max_depth,
'min_samples_split': best_min_samples_split,
'min_samples_leaf': best_min_samples_leaf
})
# 使用最佳参数的模型进行预测
best_model = RandomForestClassifier(n_estimators=best_n_estimators,
max_depth=best_max_depth,
min_samples_split=best_min_samples_split,
min_samples_leaf=best_min_samples_leaf,
random_state=42)
best_model.fit(X_train, y_train)
best_pred = best_model.predict(X_test)
print("\n遗传算法优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("遗传算法优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))
输出结果:
--- 2. 遗传算法优化随机森林 (训练集 -> 测试集) --- 遗传算法优化耗时: 251.5941 秒 最佳参数: {'n_estimators': 158, 'max_depth': 25, 'min_samples_split': 10, 'min_samples_leaf': 1} 遗传算法优化后的随机森林 在测试集上的分类报告: precision recall f1-score support 0 0.77 0.98 0.86 1059 1 0.83 0.28 0.42 441 accuracy 0.77 1500 macro avg 0.80 0.63 0.64 1500 weighted avg 0.79 0.77 0.73 1500 遗传算法优化后的随机森林 在测试集上的混淆矩阵: [[1034 25] [ 316 125]]
上述代码看上去非常复杂,而且不具备复用性。也就是说,即使你搞懂了这段代码,对你的提升也微乎其微,因为你无法对它进行改进(它永远是别人的东西),而且就算背熟悉了它,对你学习其他的方法没什么帮助,即使你学完遗传算法学粒子群,也没有帮助。
AI时代的工具很大的好处,就是找到了一个记忆工具来帮助我们记住这个方法需要的步骤,然后我们只需要调用这个工具,就可以完成这个任务:
- 关注输入和输出的格式和数据
- 关注方法的前生今世和各自的优势---优缺点和应用场景
- 关注模型本身的实现逻辑(如果用的时候很少,可跳过,借助ai实现)
三、粒子群算法
- 灵感来源: 鸟群或鱼群觅食。
- 简单理解: 把每个超参数组合想象成一个“粒子”(鸟)。每个粒子在参数空间中“飞行”。它会记住自己飞过的最好位置,也会参考整个“鸟群”发现的最好位置,结合这两者来调整自己的飞行方向和速度,同时带点随机性。
- 应用感觉: 像是一群探险家,既有自己的探索记忆,也会互相交流信息(全局最佳位置),集体协作寻找目标。通常收敛比遗传算法快一些。
粒子群方法的思想比较简单,所以甚至可以不调库自己实现。
# --- 2. 粒子群优化算法优化随机森林 ---
print("\n--- 2. 粒子群优化算法优化随机森林 (训练集 -> 测试集) ---")
# 定义适应度函数,本质就是构建了一个函数实现 参数--> 评估指标的映射
def fitness_function(params):
n_estimators, max_depth, min_samples_split, min_samples_leaf = params # 序列解包,允许你将一个可迭代对象(如列表、元组、字符串等)中的元素依次赋值给多个变量。
model = RandomForestClassifier(n_estimators=int(n_estimators),
max_depth=int(max_depth),
min_samples_split=int(min_samples_split),
min_samples_leaf=int(min_samples_leaf),
random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
return accuracy
# 粒子群优化算法实现
def pso(num_particles, num_iterations, c1, c2, w, bounds): # 粒子群优化算法核心函数
# num_particles:粒子的数量,即算法中用于搜索最优解的个体数量。
# num_iterations:迭代次数,算法运行的最大循环次数。
# c1:认知学习因子,用于控制粒子向自身历史最佳位置移动的程度。
# c2:社会学习因子,用于控制粒子向全局最佳位置移动的程度。
# w:惯性权重,控制粒子的惯性,影响粒子在搜索空间中的移动速度和方向。
# bounds:超参数的取值范围,是一个包含多个元组的列表,每个元组表示一个超参数的最小值和最大值。
num_params = len(bounds)
particles = np.array([[random.uniform(bounds[i][0], bounds[i][1]) for i in range(num_params)] for _ in
range(num_particles)])
velocities = np.array([[0] * num_params for _ in range(num_particles)])
personal_best = particles.copy()
personal_best_fitness = np.array([fitness_function(p) for p in particles])
global_best_index = np.argmax(personal_best_fitness)
global_best = personal_best[global_best_index]
global_best_fitness = personal_best_fitness[global_best_index]
for _ in range(num_iterations):
r1 = np.array([[random.random() for _ in range(num_params)] for _ in range(num_particles)])
r2 = np.array([[random.random() for _ in range(num_params)] for _ in range(num_particles)])
velocities = w * velocities + c1 * r1 * (personal_best - particles) + c2 * r2 * (
global_best - particles)
particles = particles + velocities
for i in range(num_particles):
for j in range(num_params):
if particles[i][j] < bounds[j][0]:
particles[i][j] = bounds[j][0]
elif particles[i][j] > bounds[j][1]:
particles[i][j] = bounds[j][1]
fitness_values = np.array([fitness_function(p) for p in particles])
improved_indices = fitness_values > personal_best_fitness
personal_best[improved_indices] = particles[improved_indices]
personal_best_fitness[improved_indices] = fitness_values[improved_indices]
current_best_index = np.argmax(personal_best_fitness)
if personal_best_fitness[current_best_index] > global_best_fitness:
global_best = personal_best[current_best_index]
global_best_fitness = personal_best_fitness[current_best_index]
return global_best, global_best_fitness
# 超参数范围
bounds = [(50, 200), (10, 30), (2, 10), (1, 4)] # n_estimators, max_depth, min_samples_split, min_samples_leaf
# 粒子群优化算法参数
num_particles = 20
num_iterations = 10
c1 = 1.5
c2 = 1.5
w = 0.5
start_time = time.time()
best_params, best_fitness = pso(num_particles, num_iterations, c1, c2, w, bounds)
end_time = time.time()
print(f"粒子群优化算法优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", {
'n_estimators': int(best_params[0]),
'max_depth': int(best_params[1]),
'min_samples_split': int(best_params[2]),
'min_samples_leaf': int(best_params[3])
})
# 使用最佳参数的模型进行预测
best_model = RandomForestClassifier(n_estimators=int(best_params[0]),
max_depth=int(best_params[1]),
min_samples_split=int(best_params[2]),
min_samples_leaf=int(best_params[3]),
random_state=42)
best_model.fit(X_train, y_train)
best_pred = best_model.predict(X_test)
print("\n粒子群优化算法优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("粒子群优化算法优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))
输出结果:
--- 2. 粒子群优化算法优化随机森林 (训练集 -> 测试集) --- 粒子群优化算法优化耗时: 374.1755 秒 最佳参数: {'n_estimators': 200, 'max_depth': 18, 'min_samples_split': 4, 'min_samples_leaf': 1} 粒子群优化算法优化后的随机森林 在测试集上的分类报告: precision recall f1-score support 0 0.77 0.98 0.86 1059 1 0.83 0.29 0.43 441 accuracy 0.77 1500 macro avg 0.80 0.63 0.64 1500 weighted avg 0.79 0.77 0.73 1500 粒子群优化算法优化后的随机森林 在测试集上的混淆矩阵: [[1034 25] [ 315 126]]
四、退火算法
- 灵感来源: 金属冶炼中的退火过程(缓慢冷却使金属达到最低能量稳定态)。
- 简单理解: 从一个随机的超参数组合开始。随机尝试改变一点参数。如果新组合更好,就接受它。如果新组合更差,也有一定概率接受它(尤其是在“高温”/搜索早期)。这个接受坏解的概率会随着时间(“降温”)慢慢变小。
- 应用感觉: 像一个有点“冲动”的探险家,初期愿意尝试一些看起来不太好的路径(为了跳出局部最优的小山谷),后期则越来越“保守”,专注于在当前找到的好区域附近精细搜索。擅长避免陷入局部最优。
# --- 2. 模拟退火算法优化随机森林 ---
print("\n--- 2. 模拟退火算法优化随机森林 (训练集 -> 测试集) ---")
# 定义适应度函数
def fitness_function(params):
n_estimators, max_depth, min_samples_split, min_samples_leaf = params
model = RandomForestClassifier(n_estimators=int(n_estimators),
max_depth=int(max_depth),
min_samples_split=int(min_samples_split),
min_samples_leaf=int(min_samples_leaf),
random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
return accuracy
# 模拟退火算法实现
def simulated_annealing(initial_solution, bounds, initial_temp, final_temp, alpha):
current_solution = initial_solution
current_fitness = fitness_function(current_solution)
best_solution = current_solution
best_fitness = current_fitness
temp = initial_temp
while temp > final_temp:
# 生成邻域解
neighbor_solution = []
for i in range(len(current_solution)):
new_val = current_solution[i] + random.uniform(-1, 1) * (bounds[i][1] - bounds[i][0]) * 0.1
new_val = max(bounds[i][0], min(bounds[i][1], new_val))
neighbor_solution.append(new_val)
neighbor_fitness = fitness_function(neighbor_solution)
delta_fitness = neighbor_fitness - current_fitness
if delta_fitness > 0 or random.random() < np.exp(delta_fitness / temp):
current_solution = neighbor_solution
current_fitness = neighbor_fitness
if current_fitness > best_fitness:
best_solution = current_solution
best_fitness = current_fitness
temp *= alpha
return best_solution, best_fitness
# 超参数范围
bounds = [(50, 200), (10, 30), (2, 10), (1, 4)] # n_estimators, max_depth, min_samples_split, min_samples_leaf
# 模拟退火算法参数
initial_temp = 100 # 初始温度
final_temp = 0.1 # 终止温度
alpha = 0.95 # 温度衰减系数
# 初始化初始解
initial_solution = [random.uniform(bounds[i][0], bounds[i][1]) for i in range(len(bounds))]
start_time = time.time()
best_params, best_fitness = simulated_annealing(initial_solution, bounds, initial_temp, final_temp, alpha)
end_time = time.time()
print(f"模拟退火算法优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", {
'n_estimators': int(best_params[0]),
'max_depth': int(best_params[1]),
'min_samples_split': int(best_params[2]),
'min_samples_leaf': int(best_params[3])
})
# 使用最佳参数的模型进行预测
best_model = RandomForestClassifier(n_estimators=int(best_params[0]),
max_depth=int(best_params[1]),
min_samples_split=int(best_params[2]),
min_samples_leaf=int(best_params[3]),
random_state=42)
best_model.fit(X_train, y_train)
best_pred = best_model.predict(X_test)
print("\n模拟退火算法优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("模拟退火算法优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))
输出结果:
--- 2. 模拟退火算法优化随机森林 (训练集 -> 测试集) --- 模拟退火算法优化耗时: 129.1660 秒 最佳参数: {'n_estimators': 98, 'max_depth': 16, 'min_samples_split': 7, 'min_samples_leaf': 2} 模拟退火算法优化后的随机森林 在测试集上的分类报告: precision recall f1-score support 0 0.77 0.98 0.86 1059 1 0.86 0.29 0.43 441 accuracy 0.78 1500 macro avg 0.82 0.63 0.65 1500 weighted avg 0.80 0.78 0.73 1500 模拟退火算法优化后的随机森林 在测试集上的混淆矩阵: [[1039 20] [ 315 126]]
五、作业
用尽可能简短但是清晰的语言说清楚这三种算法的实现逻辑,帮助更深入的理解。
5.1 三种启发式算法的实现逻辑对比
一、遗传算法(Genetic Algorithm, GA)
核心逻辑
- 初始化:随机生成由多个“个体”(超参数组合)组成的初始种群。
- 适应度评估:计算每个个体在验证集上的性能(如准确率),作为其适应度值。
- 选择:根据适应度高低,通过轮盘赌或锦标赛等方法筛选优秀个体进入下一代(优胜劣汰)。
- 交叉重组:随机配对选中的个体,交换部分参数(如超参数的权重或结构),生成新个体。
- 变异:以低概率随机修改某些参数,引入多样性,避免局部最优。
- 迭代:重复2-5步直至满足终止条件(如达到最大迭代次数或适应度稳定)。
特点:通过种群演化模拟自然选择,适合高维复杂问题,但计算成本较高。
二、粒子群优化(Particle Swarm Optimization, PSO)
核心逻辑
-
初始化:随机生成一群“粒子”,每个粒子代表一组超参数,并赋予初始速度和位置。
-
适应度评估:计算每个粒子的验证集性能,记录其个体历史最佳位置(
pbest
)和全局最佳位置(gbest
)。 -
更新速度:结合以下三部分调整速度:
• 惯性项:保留当前速度方向;• 个体认知:向自身历史最佳位置靠近;
• 社会学习:向群体全局最佳位置靠近。
-
更新位置:根据新速度移动粒子,生成新参数组合。
-
迭代:重复2-4步直至收敛或达到终止条件。
特点:通过个体与群体信息协同搜索,收敛速度快,参数调整简单(仅需惯性权重、认知/社会因子)。
三、模拟退火(Simulated Annealing, SA)
核心逻辑
-
初始解:随机生成一组超参数作为当前解,并设定初始高温(
T
)和降温策略。 -
扰动生成新解:在当前解附近随机微调参数(如加减一个随机数)。
-
Metropolis准则:
• 若新解性能更优,直接接受;• 若更差,以概率
exp(-ΔE/T)
接受(ΔE为性能差值),避免陷入局部最优。 -
降温:逐步降低温度(如
T = T × 0.95
),缩小随机扰动幅度和接受差解的概率。 -
终止:当温度降至阈值或解不再改进时结束。
特点:通过“高温探索→低温收敛”平衡全局与局部搜索,擅长跳出局部最优,但需合理设计降温策略。
对比总结
算法 | 搜索策略 | 关键操作 | 适用场景 |
---|---|---|---|
遗传算法 | 种群演化(交叉+变异) | 选择、重组、变异 | 高维、多峰复杂问题 |
粒子群 | 群体协作(个体+社会学习) | 速度与位置更新 | 快速收敛的中低维问题 |
模拟退火 | 热力学退火(概率接受差解) | 温度控制与扰动 | 避免局部最优的单一解优化 |
5.2 Python实现逻辑类比
现在用 Python 的实现逻辑类比,用最简短的代码结构和自然语言解释这三种算法,帮助你快速理解其核心。
一、遗传算法(GA)实现逻辑
# 伪代码示例
population = 随机生成初始种群 # 例:[[0.1, 0.5], [0.3, 0.8], ...]
for 每代演化 in range(max_iter):
scores = []
for 个体 in population:
分数 = 模型在验证集的表现(适应度) # 例:调用模型训练并评估准确率
scores.append(分数)
# 选择父母(优胜劣汰)
parents = 轮盘赌选择(scores, population) # 高分个体更可能被选中
# 交叉重组(生孩子)
children = []
for _ in range(len(population)//2):
父, 母 = 随机选一对父母
子1, 子2 = 交叉操作(父的参数, 母的参数) # 例:参数拼接或加权平均
children.extend([子1, 子2])
# 变异(增加随机性)
for child in children:
if 随机数 < 变异率:
随机扰动某几个参数
population = children # 新一代取代旧种群
关键操作
• 交叉:模拟基因混合(如交换超参数的片段)。
• 变异:防止种群退化(如对某个参数随机加/减 0.1)。
• 选择:只让高分个体繁殖(类似 selected = sorted(population, key=score)[-10:]
)。
二、粒子群优化(PSO)实现逻辑
# 伪代码示例
particles = 初始化粒子群 # 每个粒子有位置和速度,例:位置=参数组,速度=随机方向
pbest = [每个粒子历史最佳位置] # 初始化为当前位置
gbest = 全体粒子中的全局最佳位置
for 迭代 in range(max_iter):
for 每个粒子 in particles:
分数 = 模型评估粒子当前位置的适应度
if 分数 > 粒子自身历史最高分:
更新 pbest[该粒子] = 当前位置
if 分数 > 全局最高分:
更新 gbest = 当前位置
# 更新速度和位置
for 每个粒子 in particles:
新速度 = 惯性权重 * 当前速度 + \
认知因子 * 随机数 * (pbest位置 - 当前位置) + \
社会因子 * 随机数 * (gbest位置 - 当前位置)
新位置 = 当前位置 + 新速度 # 确保位置在参数空间范围内
particles = 所有粒子的新位置
关键操作
• 速度更新:粒子逐步向自己和群体的最佳位置移动(公式中可能用 w=0.5
, c1=2
, c2=2
)。
• 粒子约束:限制参数范围(如 新位置 = np.clip(新位置, 0, 1)
)。
三、模拟退火(SA)实现逻辑
# 伪代码示例
current_params = 随机初始参数
current_score = 模型评估(current_params)
T = 初始高温(如1000)
for 降温次数 in range(max_iter):
T = 降温策略(T) # 例:T = T * 0.95
# 生成新解(随机扰动当前参数)
new_params = current_params + 随机噪声(如高斯噪声)
new_score = 模型评估(new_params)
# 接受新解的条件
delta = new_score - current_score
if delta > 0: # 新解更好 → 接受
current_params = new_params
current_score = new_score
else:
if 随机数 < exp(delta / T): # 按概率接受差解
current_params = new_params
关键操作
• 扰动生成:轻微改变参数(如 new_param = current_param + np.random.normal(0, 0.1)
)。
• Metropolis准则:早期高温(T
大)时更可能跳出局部最优。
直观对比
• 遗传算法:种群迭代 → 参数组合混合优化(适合超参数多、维度高)。
• 粒子群:粒子协作 → 速度和方向引导优化(适合中等维度、快速收敛)。
• 模拟退火:单个解随机游走 → 概率性接受“坏方向”(适合避免局部最优的小规模问题)。
Python调包提示:
• 可以直接用 DEAP
库实现遗传算法,pyswarm
做粒子群,scipy.optimize.basinhopping
做退火。