- 博客(4)
- 收藏
- 关注
原创 主成分分析及案例
主成分分析试图定义一组互不相关的变量,称为Y1,........Yp的主成分(PC),记为Z1,......Zp,每一主成分都是Y1,。第j主成分Zj=aj'y:在满足限制aj’aj=1,且cov(ak‘y,aj’y)=0,k<j时,最大化方差var(aj‘y)当变量y=(Y1,....,Yp)‘的数值(由于度量单位不同等原因)差距过大,直接由协方差矩阵生成的主成分会由方差大的变量主导。第二主成分Z2=a2’y:在满足限制a2'a2=1,且cov(a1‘y,a2’y)=0时,最大化方差var(a2‘y)
2023-07-18 14:20:37 349
原创 R语言 判别分析和分类分析
则更偏向于给出“分类结果":预测一个新观测对象的类别,或者说是将其分配到一个类别,利用一些规则(分类函数)评估新观测对象的测量值变量,找到该对象最有可能属于的类别。(两群体情形)用来寻找两个群体间”最好“的线性组合法则,来最大限度地区分两个群体。现有g个群体,对于第K个组Gk,k=1,。:在寻找一种“分类规则”:利用变量的函数(判别函数)来描述或者解释两组或多组群体之间的区别。其中V3为类别变量,将上面的数据保存在E盘R/shuju/shuju2.xlsx。能最大化(1)的系数向量a=e1,对应最大值为。
2023-07-13 14:36:32 888
原创 R语言 多元数据的相关性及数据展示
假设数据集是通过对N个样品/观测点测量它们对应的P个变量所得到的,那么这个数据集就能够表示为n*p的数据矩阵Y。上面是研究人员在乳酸菌饮料中添加黄原胶后测得的离心沉淀数据,为了考察造成不同黄原胶添加后蛋白沉底不同的原因。下面用R语言来进行数据的相关分析以及对多元数据进行展示。在R中,可以用cov()和cor()函数分别来求样本协方差矩阵和样品相关系数矩阵。:“元“指的是信息维度或变量,多元分析指同时考虑多个变量,从多元数据集中获取信息的统计方法。即可求得数据第2到第8列的协方差矩阵和相关系数矩阵。
2023-07-11 14:45:53 630
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人