R语言 判别分析和分类分析

本文介绍了R语言中的Fisher线性判别分析,主要用于区分两个或多个群体。在两群体情况下,通过寻找最佳线性组合来最大化群体间的差异。多群体时,通过最大化组间方差与组内方差的比值来确定判别向量。R中的`lda`函数可以帮助实现这一过程,通过示例展示了如何使用`lda`进行数据读取和判别分析。
摘要由CSDN通过智能技术生成

判别分析:在寻找一种“分类规则”:利用变量的函数(判别函数)来描述或者解释两组或多组群体之间的区别。

分类分析则更偏向于给出“分类结果":预测一个新观测对象的类别,或者说是将其分配到一个类别,利用一些规则(分类函数)评估新观测对象的测量值变量,找到该对象最有可能属于的类别。

Fisher线性判别分析:

(两群体情形)用来寻找两个群体间”最好“的线性组合法则,来最大限度地区分两个群体。假设:两个群体的均值向量u1≠u2,但具有相同的协方差矩阵\sum。即寻找一个P维变量的线性组合(投影方向a),使得两组间投影后的 和  的”标准化距离”最大。

Fisher线性判别分析在两样本t检验统计量:

                                     

 中,寻找a使得t2(a)最大

结果为a= ,它被称为判别函数系数,  被称为Fisher判别函数。

多群体情形

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值