判别分析:在寻找一种“分类规则”:利用变量的函数(判别函数)来描述或者解释两组或多组群体之间的区别。
分类分析则更偏向于给出“分类结果":预测一个新观测对象的类别,或者说是将其分配到一个类别,利用一些规则(分类函数)评估新观测对象的测量值变量,找到该对象最有可能属于的类别。
Fisher线性判别分析:
(两群体情形)用来寻找两个群体间”最好“的线性组合法则,来最大限度地区分两个群体。假设:两个群体的均值向量u1≠u2,但具有相同的协方差矩阵。即寻找一个P维变量的线性组合(投影方向a),使得两组间投影后的 和 的”标准化距离”最大。
Fisher线性判别分析在两样本t检验统计量:
中,寻找a使得t2(a)最大
结果为a= ,它被称为判别函数系数, 被称为Fisher判别函数。
多群体情形