力扣54. 螺旋矩阵

本文介绍了一种使用四方向标志的螺旋矩阵遍历算法,用于将二维矩阵元素按螺旋顺序存入一维数组。算法的时间复杂度和空间复杂度均为O(M×N),其中M为行数,N为列数。给出了C++代码实现和复杂度分析。
摘要由CSDN通过智能技术生成

Problem: 54. 螺旋矩阵

题目描述

在这里插入图片描述在这里插入图片描述

思路

定义四个标志top、bottom、left、right标记矩阵的四个方位,依次**从左到右(执行后top++);从上到下(执行后right–);从右到左(执行后bottom–);从左到右(执行后left++)**螺旋遍历并将元素添加到一个二维数组中

复杂度

时间复杂度:

O ( M × N ) O(M \times N) O(M×N);其中 M M M是矩阵的行数 N N N为矩阵的列数

空间复杂度:

O ( M × N ) O(M \times N) O(M×N)

Code

class Solution {
public:
    /**
     * 
     * @param matrix Given matrix 
     * @return vector<int>
     */
    vector<int> spiralOrder(vector<vector<int>>& matrix) {
        int row = matrix.size();
        int col = matrix[0].size();
        int top = 0;
        int bottom = row - 1;
        int left = 0;
        int right = col - 1;
        vector<int> res;
        while (left <= right && top <= bottom) {
            //From left to right
            for (int i = left; i <= right; ++i) {
                res.push_back(matrix[top][i]);
            }
            top++;
            //From top to bottom
            for (int i = top; i <= bottom; ++i) {
                res.push_back(matrix[i][right]);
            }
            right--;
            //From right to left
            for (int i = right; (i >= left && top <= bottom); --i) {
                res.push_back(matrix[bottom][i]);
            }
            bottom--;
            //From bottom to top
            for (int i = bottom; (i >= top && left <= right); --i) {
                res.push_back(matrix[i][left]);
            }
            left++;
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值