【bzoj2005】[Noi2010]能量采集 莫比乌斯反演

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】

5 4

【样例输入2】

3 4

Sample Output

【样例输出1】

36

【样例输出2】

20

【数据规模和约定】

对于10%的数据:1 ≤ n, m ≤ 10;

对于50%的数据:1 ≤ n, m ≤ 100;

对于80%的数据:1 ≤ n, m ≤ 1000;

对于90%的数据:1 ≤ n, m ≤ 10,000;

对于100%的数据:1 ≤ n, m ≤ 100,000。

HINT

Source

数学题


2i<=nj<=mgcd(i,j)1

水题。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;

typedef long long LL;

const int SZ = 1000010;

bool vis[SZ];
int pri[SZ],phi[SZ];
LL sum[SZ];

void shai(int n)
{
    phi[1] = 1;
    for(int i = 2,tot = 0;i <= n;i ++)
    {
        if(!vis[i]) pri[++ tot] = i,phi[i] = i - 1;
        for(int j = 1,m;j <= tot && (m = i * pri[j]) <= n;j ++)
        {
            vis[m] = 1;
            if(i % pri[j] == 0) { phi[m] = pri[j] * phi[i]; break; }
            else phi[m] = phi[pri[j]] * phi[i];
        }
    }
    for(int i = 1;i <= n;i ++)
        sum[i] = sum[i - 1] + phi[i];
}

LL ask(int n,int m)
{
    if(n > m) swap(n,m);
    LL ans = 0;
    for(int i = 1,r;i <= n;i = r + 1)
    {
        r = min(n / (n / i),m / (m / i));
        ans += (sum[r] - sum[i - 1]) * (n / i) * (m / i);
    }
    return (ans << 1) - (LL)n * m;
}

int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    shai(min(n,m));
    printf("%lld\n",ask(n,m));
    return 0;
}

发布了307 篇原创文章 · 获赞 27 · 访问量 29万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览