[bzoj2763]飞行路线 分层图最短路

本文详细解析了一种求解带权图中从起点到终点经过特定数量边的最短路径问题的方法。通过两种不同的实现方式——Dijkstra算法和SPFA算法,展示了如何有效地解决这一问题。文章还提供了完整的代码示例,帮助读者更好地理解算法的具体实现。
摘要由CSDN通过智能技术生成

题目←

大意题面里很清楚了……
难得没wa就过了的题啊,大哭
建图方式见网络提速

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#define LL long long
#define INF 2147483647
using namespace std;
const int MAXN = 200000 + 50;
int n,m,k,S,T;
int head[MAXN],next[MAXN << 1],dis[MAXN][11],tot;
void init(int n)
{
    for(int i = 0;i <= n;i ++)
    {
        head[i] = -1;
        for(int j = 0;j <= k;j ++)
        {
            dis[i][j] = INF;
        }
    }
}
struct edge
{
    int f,t,v;
    bool free;
}l[MAXN << 1];
void build(int f,int t,int v,int free)
{
    l[++ tot] = (edge){f,t,v,free};
    next[tot] = head[f];
    head[f] = tot;
}
int a,b,c;

struct zt
{
    int num,dis,cost;
};
bool operator < (zt a,zt b)
{
    return a.dis > b.dis;
}
priority_queue <zt> q;
bool used[MAXN][11];
void dij(int x)
{
    dis[x][0] = 0;
    q.push((zt){x,0,0});
    while(!q.empty())
    {
        zt u = q.top();
        q.pop();
        used[u.num][u.cost] = true;
        if(u.num == T && u.cost == k)return;
        for(int i = head[u.num];i != -1;i = next[i])
        {
            int t = l[i].t;
            if(dis[t][u.cost + l[i].free] > dis[u.num][u.cost] + l[i].v && u.cost + l[i].free <= k)
            {
                dis[t][u.cost + l[i].free] = dis[u.num][u.cost] + l[i].v;
                q.push((zt){t,dis[t][u.cost + l[i].free],u.cost + l[i].free});
            }
        }
    }
}
int main()
{
    scanf("%d%d%d%d%d",&n,&m,&k,&S,&T);
    init(n);
    for(int i = 1;i <= m;i ++)
    {
        scanf("%d%d%d",&a,&b,&c);
        build(a,b,c,0);
        build(b,a,c,0);
        build(a,b,0,1);
        build(b,a,0,1);
    }
    dij(S);
    printf("%d",dis[T][k]);
    return 0;
}

这里贴一份wyh大佬的代码,建图有点微妙的不同:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>

using namespace std;
const int MAXN = 100000 + 5;
const int INF = 2147483645;

struct edge
{
    int f,t,v;
}l[MAXN << 1];

bool used[MAXN][15];
int n,m,s,e,k,f,t,v;
int dis[MAXN][15],first[MAXN],next[MAXN],tot;

void init()
{
    tot = 0;
    memset(first,-1,sizeof(first));
    scanf("%d%d%d%d%d",&n,&m,&k,&s,&e);

    for(int i = 0;i <= n;i ++)
        for(int  j = 0; j <= k;j ++)
            dis[i][j] = INF;
}

void build(int f,int t,int v)
{
    l[++ tot] = (edge){f,t,v};
    next[tot] = first[f];
    first[f] = tot;
}

queue <int> q,p;
void spfa(int s)
{
    dis[s][0] = 0;
    used[s][0] = 1;
    q.push(s);p.push(0);

    while(!q.empty())
    {
        int x = q.front();
        int cnt = p.front();
        q.pop();p.pop();

        used[x][cnt] = 0;
        for(int i = first[x]; i != -1; i = next[i])
        {
            int u = l[i].t;
            if(dis[u][cnt] > dis[x][cnt] + l[i].v)
            {
                dis[u][cnt] = dis[x][cnt] + l[i].v;
                if(!used[u][cnt])
                {
                    q.push(u);
                    p.push(cnt);
                    used[u][cnt] = 1;
                }
            }
            if(cnt < k)
            {
                if(dis[u][cnt + 1] > dis[x][cnt])
                {
                    dis[u][cnt + 1] = dis[x][cnt];
                    if(!used[u][cnt + 1])
                    {
                        q.push(u);
                        p.push(cnt + 1);
                        used[u][cnt + 1] = 1;
                    }                   
                }
            }
        } 
    }
    return;
}

int main()
{
    init();

    for(int i = 1; i <= m; i++)
    {
        scanf("%d%d%d",&f,&t,&v);
        build(f,t,v);
        build(t,f,v);
    }

    spfa(s);
    printf("%d\n",dis[e][k]);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值