病虫害检测图像数据集介绍

对于机器学习来说,数据集永远是算法构建的第一步。今天作者就给小伙伴介绍一种在智能农业领域做病虫害检测和识别的数据集。病虫害检测识别不仅要求作物病害虫害的图片数量多、而且种类要全,那么以下这个数据集可以说是满足了这些要求。

该数据集包含了农作物、蔬菜、果树和农田杂草等四大系列的标准的农业虫草害图片、文字、视频等数据。数据集规模包含各种病虫草害高清图片约80万张,涵盖病虫害约1800种,农业昆虫约1200种,杂草约500种,可直接用于病虫害图像识别算法构建和对比测试。下载访问网址www.ipmphoto.com

该数据集分别农业虫害和农业病害两个部分。

农业虫害:

农业病害:

部分图片:

温室白粉虱

烟粉虱

黄胸蓟马

美洲斑潜蝇

甜菜螟

斜纹夜蛾

黄足黄守瓜

黄足黑守瓜

瓜绢

数据集介绍:农业病虫害YOLO目标检测数据集 一、基础信息 数据集名称:农业病虫害YOLO目标检测数据集 图片数量: - 训练集:5,343张图片 - 验证集:777张图片 - 测试集:306张图片 分类类别: - ants(蚂蚁): 常见农业害虫,可能破坏植物根系 - aphids(蚜虫): 群体性吸汁害虫,导致植物营养不良 - black-spot(黑斑病): 真菌性植物病害特征 - catterpillar(毛虫): 食叶类鳞翅目幼虫 - ladybug(瓢虫): 益虫类别,用于生物防治 - powdery-mildew(白粉病): 植物叶片真菌感染 - thrips(蓟马): 微型刺吸式害虫 - whitefly(粉虱): 传播病毒病的温室害虫 标注格式: YOLO格式标注,包含目标边界框坐标与类别标签,适配主流目标检测框架。 二、适用场景 智能农业监测系统开发: 支持构建田间病虫害实时检测系统,帮助农户精准识别作物病虫害类型。 精准农业应用开发: 集成至农用无人机/巡检设备,实现病虫害自动化识别与定位。 农业研究领域: 为植物保护算法研究提供标注数据,支持发表农业AI领域研究成果。 农技教育培训: 可作为农业院校数字化教学资源,辅助病虫害识别教学。 三、数据集优势 多目标覆盖全面: 包含8类高发性病虫害,涵盖虫害(蚂蚁/蚜虫等)与病害(黑斑病/白粉病)两大类别。 标注质量可靠: 严格遵循YOLO标注规范,提供精确目标定位框,适配YOLOv5/v7/v8等主流检测模型。 田间场景适配性: 数据采集自真实农业环境,包含复杂背景下的目标样本,提升模型实际部署效果。 生态平衡标注: 同时包含害虫(蚜虫)与益虫(瓢虫)标注,支持生物防治效果评估模型开发。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值