基于web的亚热带常见自然林病虫害识别系统——数据集与数据集划分

本文介绍了在亚热带地区,尤其是广东罗浮山自然保护区,如何收集和划分用于病虫害识别的图像数据集。数据集包括野生荔枝树、黄皮树和油茶树的健康及病虫害样本,总计5000张过滤后的图片。数据集被划分为训练集(80%)、验证集(20%),为计算机视觉模型的训练提供基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概要

本篇文章先为病虫害识别进行数据的分类,划分训练集,划分为三个数据集,病虫害的数据集我已经放在我的资源里面,有需要的小伙伴可以自己下载。
声明: 我的数据集照片都是自己拍摄的不是在网络上面下载的,拍摄照片不易,需要收一点点费用哈😁

数据收集

为了系统能够准确识别出自然生长的树木病虫害的情况,训练模型所采集的数据样本一定要具有代表性,所以树叶的采集对于模型的生成至关重要。故采集地点选择在广东省惠州市罗浮山自然保护区,该保护区地理位置处在亚热带地区。采集时间为 2022 年 2 月份,此时正值早春,各种病虫害都处在高发期前期,此时刚好是
识别病虫害进行提前防止的时期。整个采集过程为期7天,总计病虫害样本图像10000张,过滤后可使用照片 5000 张。本文主要对以下亚热带自然林的树进行了叶片采摘。第一类是对野生荔枝树,采用的取样方法是:在同一保护区针对自然生长的荔枝树不同品种与大致相近树龄的数目进行不同病虫害的树叶进行采集。采集顺序为正常荔枝树树叶(475 张图像)、瘿螨病荔枝叶(562 张图像)、患有叶瘿蚊病害荔枝树叶(569 张图像)。第二类是对野生黄皮树树叶图像进行采集。根据黄皮树的生长规律,病虫害的常见性

图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别病虫害检测中的应用将越来越广泛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI敲代码的手套

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值