LMS自适应滤波算法是基于维纳滤波算法,在最陡梯度下降法的基础上形成的滤波算法,它用梯度矢量的估计值来代替其精确值,应用广泛。本文是自己在入门学习LMS算法时整理归纳所得,里面包含了自己在编程实现时的疑问及自我思考后的解答,如有不足,虚心请求请指正。
LMS算法的理论基础
- LMS算法的损失函数(cost function)为:
- LMS算法的递推公式为:
注: μ为调整步长的常数,用于控制系统的稳定性和自适应算法的收敛速度,为下面代码示例中的mu. - LMS算法实现步骤
- 令起始时刻 i=0自适应滤波器的系数矢量W(0)为任意值;
- 根据输入信号矢量X(i) ,利用期望信号d(i) 和滤波器的输出信号 y(i)计算误差信号e(i);
- 根据误差信号,利用以下的递推公式 ,进行滤波器系数的更新;
- 重复步骤2)和3),直到达到平稳状态(系数W几乎保持不变)。
-
LMS算法的收敛条件:
通过引入系数误差矢量 ,整理得LMS算法的收敛条件为 :
注: λmax为输入信号的自相关矩阵 的最大特征值
LMS算法的matlab实现
LMS算法的实现程序分为两个部分,第一部分为LMS算法函数,主要完成LMS的实现过程;第二部分为主函数,用来准备数据和调用第一部分的算法实现滤波。
- LMS子程序
function [w,en,yn] = my_LMS(xn,dn,mu)
%LMS实现程序
% 输入:
% xn 输入信号 列向量
% dn 理想信号 列向量
% mu 收敛常数 标量
% itr 迭代次数 标量
% M 滤波器的阶数 标量
% 输出:
% w 滤波器的系数矩阵 大小为M×itr 每一列代表一次迭代后的系数
% en 误差信号 大小为itr×1 每一行代表一次迭代后产生的误差
% yn 滤波器的输出信号 列向量
M = 30; %定义滤波器的阶数为30
itr = length(xn); %使得迭代次数为输入信号xn的长度
w = zeros(M,itr);%将滤波器的初始值设置为0
en = zeros(itr,1)