- 博客(1844)
- 收藏
- 关注
原创 AI大模型落地实战:用LangChain构建RAG系统,小白也能轻松上手!
摘要: RAG(检索增强生成)系统通过动态整合外部知识库,在生成答案时提供引用文本,显著提升可信度和可解释性。该系统利用LangChain框架实现文档加载、文本分割、嵌入存储及检索生成全流程。关键技术包括文件哈希检测更新、向量化检索、Prompt模板设计,最终生成答案并附上来源文档。适用于法律、医疗、学术等需验证信息的领域,未来可扩展多模态支持。完整代码示例见学习资料包。
2025-12-18 09:51:51
152
原创 多Agent协作入门到精通(手把手教),只需3步,告别AI智能体瞎干活!
多Agent协作的核心不是“用AI替代人”,而是让智能体像专业团队一样分工协作。把架构师和开发的职责拆清楚,再搭好流程,你会发现——AI智能体比人还好管理,只要规则明确,它绝对不摸鱼、不甩锅。
2025-12-18 09:50:45
499
原创 重磅!AI Agents优化终极指南,最新综述一篇彻底搞懂!
LLM优化技术在许多通用任务中提升了模型性能,但缺乏针对AI Agents关键功能(如长期规划、动态环境交互和复杂决策)的专门优化。为此,华东师大等提供了对LLM的AI Agents优化方法的全面回顾,将其分为参数驱动和非参数驱动。
2025-12-18 09:50:03
641
原创 AI Agent从入门到精通,看这篇就够!万字长文,从0到1手把手教你搭建智能体(附实战案例)
在人工智能领域,Agent并非一个全新的概念,但在大模型时代,它被赋予了全新的生命力。简单来说,Agent是一个能够自主感知环境、理解任务、制定计划、调用工具并完成目标的智能实体。它不仅仅是与你对话的聊天机器人,更是能够代理你完成复杂工作的"数字员工"。
2025-12-18 09:46:03
476
原创 Agent的“话痨”病有救了!微软黑科技教你压缩对话历史,让AI告别失忆,这篇教程太顶了!
ACON框架:优化长时域LLM代理的上下文压缩 ACON提出了一种创新框架,专门用于优化长时域大型语言模型代理的上下文压缩。该框架具有两大核心优势: 统一压缩环境观察和交互历史,通过对比分析动态优化自然语言压缩指南,保留关键信息的同时显著降低内存使用 可将优化后的压缩器蒸馏到小模型,保持95%以上性能的同时减少计算开销 实验表明,在AppWorld基准测试中,ACON在保持高准确率的同时能降低50%以上的峰值token数量。该框架通过无梯度优化方式,适用于各类闭源和生产模型,显著提升了长时域任务的执行效率和
2025-12-17 11:16:07
668
原创 一文读懂AI智能体!LangChain V1.0保姆级教程,从模型调用到Agent编排,手把手带你入门!
本文摘要:智能体系统是一种结合模型、工具和策略的可执行系统,相比单次模型调用能更好地处理复杂任务。其分层架构包含接口层、编排层、策略中间件、模型层和工具层,通过标准化内容块和执行上下文实现统一管理。关键价值在于可控性(错误防护、审计)、稳定性(重试/降级机制)和可观测性(日志/Trace)。适用场景包括多步骤任务、结构化输出需求和高可靠性业务,而简单文本生成任务建议直接使用模型调用。最小实现需包含模型调用、工具集成、中间件防护等核心能力,并通过示例展示了仅模型调用与带工具编排的差异。
2025-12-17 11:13:19
288
原创 LangChain 1.0+ 保姆级教程:手把手教你实现问答转换,附完整代码,新手也能直接抄作业!
摘要:本文介绍了在不降级LangChain 1.0+环境的情况下,用原生工具替代doctran实现问答转换的方案。通过使用langchain-community的QATransformer或OpenAIQATransformer,可直接将文档转换为问答对,无需依赖doctran。文中提供了详细的代码修改示例和安装指南,确保兼容LangChain 1.0+版本。此外,还分享了大模型AI学习的四个阶段路线图,包括初阶应用、高阶应用、模型训练和商业闭环,帮助读者系统掌握AI技术。
2025-12-17 11:10:41
166
原创 Multi-Agent万字长文!从核心架构到LangGraph实战,这篇保姆级教程全讲透了!
随着大模型的快速发展,构建智能体已成为大模型应用最基本的能力了,然而,单智能体在处理复杂、多步骤任务时往往存在局限性。为了应对这一挑战,多智能体系统应运而生,它通过多个智能体协同工作的方式,将复杂任务分解为多个子任务,由不同的智能体分别处理,最终合并结果并返回。LangGraph作为LangChain生态系统的重要扩展,通过引入有向图模型重构了传统智能体的工作流架构,将复杂的多步骤交互和决策过程模块化,是目前主流的多智能体集成框架之一。
2025-12-17 11:10:01
719
原创 别再只懂短期记忆了!Google全新Titans架构大白话解读,让AI像人一样“过目不忘”,这篇干货太顶了!
想象一下ChatGPT在帮你总结一本几十万字的技术书时,读到第200页就把前50页的关键内容忘得一干二净——这不是科幻片,而是当今AI模型的真实困境。近日,Google研究团队发布的**Titans架构**和**MIRAS框架**,终于让AI拥有了真正的"长期记忆"。更重要的是,它们在处理超长文本时,做到了**又快又准**——这在以前被认为是不可能的。
2025-12-17 11:07:31
309
原创 AI Agent失控前夜!LangGraph“人工干预”机制万字详解(附实战),学会它,救你的项目一命!
随着大型语言模型(LLM)驱动的自主代理(Agent)从学术走向应用,如何确保其行为的可靠性、安全性与可控性,已成为决定其能否在真实世界关键任务中落地的核心挑战。大语言模型能力虽然越来越强,但并非完美无缺,可能产生错误或不准确输出。当一个 Agent 被授权执行高风险领域或敏感操作时,一个小小的错误也可能带来不可预知的风险。所以我们需要“人工干预”机制,在关键决策点让 Agent 停下来,将控制权交还给人类,让人类的智慧能够介入,弥补模型的不足。
2025-12-17 11:06:18
502
原创 刚刚,昆仑万维CEO给AGI泼了盆冷水!他说,Agent的真正目标,是创造一个新职业!
摘要:昆仑万维在MEET2026智能未来大会上展示了其AI Agent平台Skywork Super Agents的最新进展。该平台包含五个专家Agent和一个通用Agent,具备多模态内容生成能力,可一键生成PPT、Word等文件,其中"5分钟生成30页PPT"功能最受欢迎。CEO方汉指出,Agent本质是可验证过程的自动化,擅长标准化任务而非创新,未来将重点布局智能办公和垂直行业场景。他认为Agent将重塑组织形态,重复性岗位将被自动化替代,"过程架构师"等新岗位
2025-12-17 11:02:51
251
原创 AI Agent做着做着就“疯了”?从目标漂移到无限循环,一文揪出失控根源!
本文探讨了AI Agent在Demo阶段表现良好但上线后常出现问题的深层原因。作者指出,AI Agent作为实验性系统,其运行方式与传统软件有本质区别,导致三大风险:行为不可预测、成本无法估算、责任边界不清。核心问题在于Agent缺乏"刹车系统"——容器化架构能够为每个能力设置独立运行边界、资源限制和安全隔离,从而保障稳定性、控制成本并明确权限。产品经理需关注5个关键问题来判断Agent是否具备上线条件,强调真正的商业价值不在于功能强弱,而在于系统失控前的约束能力。文章最后指出,模型决定
2025-12-17 11:01:59
606
原创 AI的下一个十年,属于Agent!读懂这篇,你就抓住了未来十年的最大红利!
本文系统介绍了智能体的概念、类型及其演进历程。智能体被定义为能够感知环境并自主行动以实现目标的实体,包含环境、传感器、执行器和自主性四大要素。传统智能体经历了从简单反射式到基于模型、目标、效用的逐步演进,最终发展为具备学习能力的强化学习智能体。而以GPT为代表的大语言模型驱动的新范式智能体,通过预训练获得隐式世界模型,展现出更强的通用性和灵活性。智能体可分为反应式(快速响应)、规划式(长远思考)和混合式(兼顾两者)三种类型,适用于不同场景需求。这些智能体技术正在推动人工智能从专用工具向自主决策系统转变。
2025-12-17 10:58:55
91
原创 彻底搞懂AI Agent!MCP、Function Calling到底是什么关系?一篇说透!
在当今构建 `AI` 应用的过程中,`Function Calling`、`MCP` 以及 `AI Agent` 是三个密切相关但层级分明的概念。理解它们的区别与联系,对于开发者设计合适的 `AI` 系统至关重要。我们可以把这三者类比为“**调用指令 → 调度系统 → 自主执行者**”,分别解决不同层级的问题。
2025-12-16 10:28:51
505
原创 颠覆认知!25个AI Agent落地案例全解析:你的企业营收增长,可能就差这一篇
AI Agent通过将冗长的报告、法律文件或研究论文自动简化为简洁、易读的格式,简化了文档处理任务。此外,它们还可以根据预设的格式或法律要求收集重要信息并进行组织,生成各种内容,包括内部报告、政策变更和合规文件。这极大减轻了员工的手动工作量,加快了文档处理流程,并使官方沟通更加准确和一致。Agentic AI正在改变商业的运行方式。从前面的25个案例来看,AI Agent等技术应用已经渗透到商业决策的各个环节。数据显示,自动化技术大幅提升了工作效率——贷款审批时间缩短了85%,人事流程效率提高了80%
2025-12-16 10:27:20
803
原创 AI Agent终极指南!7大认知框架全解析+代码实战,从理论到实践,这一篇彻底讲透!
AI Agent,最近火得一塌糊涂。Sam Altman 曾这样描述未来的AI Agent:“今天的AI模型是它们将会是的最‘笨’状态,未来只会越来越聪明!” 吴恩达在AI Ascent 2024会议上也不吝赞美:“这是AI发展的黄金时代,生成式AI和AI Agent将彻底改变我们工作的方式!”。这些业界领袖的话让人感受到未来AI与人类生活、工作的深度融合正在加速到来。
2025-12-16 10:26:07
843
原创 从入门到精通:Agent任务分解终极指南,一篇彻底讲透技术栈与实战!
本文将详细介绍如何在金融、证券领域构建智能Agent系统,实现复杂问题的自动化任务分解、依赖管理和并行执行。通过大模型、意图识别、工具使用的协同配合,为用户提供高效、准确的金融数据分析和决策支持。
2025-12-16 10:24:03
828
原创 别只盯着ChatGPT了!AI智能体让你效率翻倍:从原理到搭建,小白也能轻松逆袭!
AI智能体(AI Agent)被广泛定义为一种能够在特定环境中自主感知信息、进行决策并采取行动以实现特定目标的智能实体。它模拟了人类“感知-思考-行动”的循环过程,并通过算法实现目标导向的行为。核心概念强调其作为自主系统的特性,即无需外部干预即可独立地做出决策并执行行动,同时具备与环境和其他智能体进行交互的能力,并能根据环境变化调整自身行为以适应动态条件,且具备通过不断学习提升自身性能的潜力。
2025-12-16 10:09:35
978
原创 AI Agent框架终极指南:11大顶级工具全解析,从入门到精通,一篇就够了!
最近笔者在找智能体框架,看到一个文章:https://ai.plainenglish.io/11-best-ai-agent-frameworks-for-software-developers-afa1700644bc,在此翻译翻译给大家。人工智能 Agent(智能体)彻底改变了软件开发者构建智能应用的方式。这些 AI Agent 框架提供了所需的基础设施、工具集和方法论,用以创建能够以最少的人工干预进行推理、规划并执行复杂任务的自主系统。
2025-12-16 10:08:11
583
原创 【全网最全】Sage多智能体系统框架详解:从入门到精通,收藏这一篇就够了!
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。- 简洁的 API、全面的文档、示例和广泛的错误处理。
2025-12-16 10:06:58
505
原创 AI Agent=下一代OS?别再争论了!一文彻底说透它的核心架构,看完你就懂了。
如果要用一句话来概括 AI Agent 的价值:它让我们从“告诉机器怎么做”,变成“告诉机器想要什么”。五大特征:自主决策、持续学习、多模态理解、工具生态、多智能体协作;六大模块:感知、决策、执行、记忆、反馈优化等完整技术架构;四种工作模式:目标导向、事件触发、人机协作、多智能体协同;以及一整套围绕任务分解、自我优化、开发实践、平台生态、行业应用展开的体系。2025 年之后,AI Agent 很可能会像当年的移动应用、云服务一样,逐步从“新鲜概念”变成基础设施。
2025-12-16 10:06:20
767
原创 万字长文预警!深度拆解AI大模型在石化行业的应用,从入门到精通,收藏这篇就够了!
大模型在C端用户的应用案例大家比较熟悉,而对在B端的应用案例比较少见。一方面因为B端业务机理的复杂性,导致大模型的应用还处于探索阶段;另一方面,这方面的宣传比较少。本篇介绍大模型在石油石化行业应用的几个典型案例。(大模型及其应用系列第六篇,请在文章底部#大模型及AI应用#目录下浏览其它文章)
2025-12-16 10:05:18
640
原创 2025版AI Agent终极指南:从核心架构到实战落地,这一篇彻底讲透!
当前,我们正处于一个重要的技术转折点。从大型语言模型(LLM)的诞生,到具有人类数字互动的 AI Agent 的出现,技术进步为我们带来了巨大的变革。然而,在实际的商业化应用中,焦点正在发生变化,AI Agent 的关注逐渐转向了具体的落地实践。过去几个月,AI智能体软件生态系统在记忆能力、工具调用、安全执行和部署等方面取得了显著进展。基于我们在开源AI领域一年多的实践经验和七年以上的AI研究积累,我们决定分享自己构建的"智能体技术栈",以呈现更贴合行业实践的技术全景。AI Agent 的核心组件。
2025-12-16 10:03:23
989
原创 2025年程序员淘汰预警:还在卷CRUD?AI Agent+RAG才是薪资翻倍的“新大陆”!
上周,和一位做了 8 年 Java 的朋友吃饭,他情绪很低落。“被优化了。找了一个月工作,处处碰壁。”我有点惊讶,他可是前公司的技术骨干,P7 级别,怎么会?
2025-12-15 11:56:17
1791
原创 【Google内部探秘】扒开Gemini-cli的“外衣”!源码深度解构,看懂Google如何构建AI Agent!
命令行终端是开发者的核心工作区,也是许多开发者完成工作的首选工具。当前,大语言模型正在重塑命令行终端的能力,使终端不仅能完成命令执行,还能让开发者与智能体共同完成命令的协作、创造。
2025-12-15 11:54:41
848
原创 大模型实战:解锁本地LLM新技能!情感分析只是开始,文本分析的想象力超乎你想象!
前四篇,我们已经把一整套“大模型落地环境”铺好了:* 用 **Ollama** 把开源大模型跑在本地* 学会 **API 调用 + LLM 封装*** 把 AI 塞进 **VS Code + Remote SSH*** 尝试了更偏工程和性能的 **vLLM 推理框架**
2025-12-15 11:53:27
628
原创 一张图看懂本体与知识图谱的关系!别再傻傻分不清,3分钟让你彻底搞懂!
知识建模在逻辑架构上分为两个层次:数据层和模式层。数据层是以事实为存储单位的图数据库,其事实的基础表达方式是「实体-关系-实体」或者「实体-属性-属性值」。
2025-12-15 11:51:55
475
原创 别再叫它Agent了!LangChain DeepAgents + MCP,这是AI的“虚拟研究员”!
`DeepAgents` 是 `LangChain` 团队开源的一款高性能智能体框架,专为长周期、高复杂度任务设计。基于 `LangChain` 和 `LangGraph` 构建,通过内置的任务规划、文件系统、子智能体等能力,让智能体能够更高效地完成复杂、多步骤的任务,而无需开发者从零搭建底层逻辑。
2025-12-15 11:51:17
586
原创 RAG知识库质量告急?别慌!从评估到改进的“黄金四步法”,让你的AI告别“幻觉”!
在[上一篇文章中,我们提到了用`retrieved_context`、`answer`、`ground_truth`三个值,分别两两做余弦相似度,来衡量RAG知识库的建设情况。其中:
2025-12-15 11:50:35
868
原创 别再手动救火了!N8N+Jenkins+Prometheus强强联合,实现监控、告警、处理全自动化!
研究Aiops有一段时间了,目前手里有不少可落地的方案了,接下来会把这些方案全部整理到我的[大模型课程]里。同时,欢迎大家把你遇到的场景在评论区留言。我会在能力范围内给你提供思路和建议。
2025-12-15 11:49:43
760
原创 别再拍脑袋了!AI Agent构建“灵魂三问”:何时用?怎么用?选哪种模式?一文理清思路!
AI Agent、 Agentic AI、Agentic架构、Agentic工作流、Agentic模式——如今,智能体的概念无处不在。但智能体究竟是什么?我们又该如何构建稳健高效的智能体系统?
2025-12-15 11:48:45
621
原创 评估AI的终极答案:LLM-As-a-Judge!AI时代,谁来评判AI?答案是AI自己!
LLM-as-a-Judge(大语言模型作为评判者)是指利用大型语言模型(LLM)来评估、判断或批判其他AI系统的输出,代替传统的人类评审者的评判方式。
2025-12-15 11:48:05
854
原创 【内部绝密】构建高效AI Agent的十条黄金法则!从理论到落地的工程实践,高手都在偷学!
建AI智能体(AI Agents)已成为技术领域最热门的话题之一。然而,从最初的概念验证到真正可用于生产环境的系统,这中间存在着巨大的鸿沟。基于构建数十个AI智能体的实战经验以及对顶级研究机构(如Anthropic)的研究,我们总结出了一套构建高质量AI智能体的核心原则。这不仅仅是关于算法的选择,更多的是关于系统设计、工程架构和交互逻辑的深度思考。
2025-12-15 11:44:39
835
原创 Agent架构设计从入门到精通,吃透这9大核心技术,收藏这篇就够了!
2025年,AI智能体已经不再是概念模型,它们正在逐步落地为企业级工具、产品模块,甚至成为工作流的“第二大脑”。而在这背后,一整套系统化的智能体架构,正悄然决定着这些Agent的效率、扩展性与演化方向。如果说大语言模型(LLM)是AI的发动机,那么“智能体架构”就是决定AI能走多远的底盘和驾驶系统。
2025-12-14 11:00:00
552
原创 AI Agent实战入门:从理论到落地,带你亲手搭建第一个智能体!
这是最近 X 上比较流行的一个帖子——来自 Reddit——见原文内容是如何构建第一个 AI Agent,通过循环——模型 → 工具 → 结果 → 模型,来构建 Agent 。对,很简单。算是对 Agent 的一点祛魅——即使 Manus 等通用的 Agent,本质也是这么一个小的
2025-12-14 10:30:00
843
原创 RAG优化终极指南!从原理到实战,万字长文彻底讲透,收藏这一篇就够了!
本文将介绍 22 种先进的RAG技术,灵感来源于 `all-rag-techniques` 仓库中的全面实现。这些实现使用 Python 库(如 NumPy、Matplotlib 和 OpenAI 的嵌入模型),避免使用 `LangChain` 或 `FAISS` 等依赖,以保持简单性和清晰度。
2025-12-13 11:30:00
733
原创 手把手教你玩转多智能体系统!从0到1搭建你的第一个AI团队!
Anthropic 发现,在他们的内部研究评估中,一个以 Claude Opus 4 为主智能体、Claude Sonnet 4 为子智能体的多智能体系统,其性能比单智能体的 Claude Opus 4 高出 90.2%。当智能达到一定阈值,多智能体系统就成为扩展性能的重要方式(Once intelligence reaches a threshold, multi-agent systems become a vital way to scale performance. )
2025-12-13 08:30:00
806
原创 AI Agent最常用框架超全解析!从入门到精通,看这一篇就够了!
从编写一次性的脚本到使用一个成熟的框架,是软件工程领域一次重要的思维跃迁。本文探讨如何利用业界主流的一些**智能体框架**,来高效、规范地构建可靠的智能体应用。我们将概览当前市面上主流的智能体框架,然后并对几个具有代表性的框架,分析它们之间的区别并给出选型建议。
2025-12-13 08:15:00
1618
原创 Agent从入门到精通,收藏这篇就够了!一文讲懂主流框架和核心思想!
Agent不稀奇,能“自己想、自己干、自己复盘”的才是好Agent」可一到落地,名词、框架和坑一起涌来:设计模式、强自治、可控流程、多代理协作.... 到底该不该用 Agent?该选哪一类框架?需要用到什么程度?这篇文章用直观的图表、清晰的示例,为你讲清什么是Agent、什么场景适合使用Agent以及各类主流Agent框架,希望能帮各位少走弯路,迅速判断技术路径。
2025-12-12 14:45:00
586
原创 【多模态RAG实战】从0到1手把手教学,附完整可运行代码,收藏这篇就够了!
RAG系统作为减少大模型幻觉以及提供更多垂类专业知识的系统,实现在很大范围之内被使用,目前也有非常多的研究以及系统在支持多模态内容和知识的RAG,本文介绍了主体的RAG实现的思路,并附上完整的代码,通过阅读本文,你能够了解:
2025-12-12 14:30:00
567
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅