自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1229)
  • 收藏
  • 关注

原创 随着大模型技术的发展——RAG技术有可能会被淘汰吗?

关于RAG技术有很多不同的观点,有人认为RAG技术是大模型的阶段性解决方案,最终会被淘汰;但也有人认为RAG技术仍不能被替代,其作用依然无可代替;而还有观点认为RAG技术会随着大模型技术的迭代进行升级,更多的是会形成协同发展。

2025-05-19 09:57:18 437

原创 LangGraph 平台正式发布:赋能AI开发!

近日,LangChain 宣布 **LangGraph 平台** 正式上线,这是一个专为部署和管理长期运行、有状态的 AI Agent 打造的强大工具。平台提供 **一键部署**、**30+ API 端点**、**水平扩展**、**持久化层** 和 **Agent IDE**,极大简化了 Agent 的开发、部署和管理流程。同时,它针对 Agent 运行中的核心挑战(如长期运行、异步协作和流量突发)提供了全面解决方案,并支持 **云端、混合和自托管** 多种部署选项。以下聊聊 LangGraph 平台的亮点

2025-05-19 09:56:11 468

原创 解决小LLM 6类幻觉的实用指南

LLM中的幻觉有多种不同的形式,例如以下几种:

2025-05-19 09:54:59 266

原创 DeepSeek-AI大模型赋能知识图谱

本文聚焦于大模型赋能知识图谱的技术路径,展示了6张图,分别是:①知识图谱与大模型融合的现有研究工作、②大模型赋能知识图谱系统测评体系、③大模型赋能知识图谱的技术路径——关键技术1、④大模型赋能知识图谱的技术路径——关键技术2、⑤大模型赋能知识图谱的应用场景示例——基于大模型增强的知识抽取、⑥金融行业实践案例——基于大模型的智能图分析平台反欺诈场景应用。

2025-05-19 09:51:00 451

原创 基于MaxKB部署本地知识库问答系统

随着 DeepSeek 的迅速崛起,人工智能的浪潮达到了前所未有的高潮。为了提升企业的运营效率,越来越多的公司开始部署专属的知识库问答系统。这类系统不仅能够显著提高工作效率,还能有效地整合和利用企业内部的知识资源。

2025-05-18 10:45:00 405

原创 手把手教会你玩转本地大模型:Ollama安装+deepseek部署+Dify接入+独立调用全攻略

大模型的本地部署方式有很多,可以直接部署,也可以借助其他工具进行部署,为了方便使用和管理,通常是借助其他工具进行部署,例如Ollama或者LM Studio,相比于LM Studio,Ollama**下载模型方便且兼容性**好,但是安装会稍微麻烦一点而且没有界面,不过这些都好解决。

2025-05-17 10:45:00 718

原创 企业AI Agent战略级规模化落地方法论,Agentic AI Stack for Enterprises

当前关于AI Agent的技术栈有很多,但真正能够用于企业的并不多。每一种技术框架和工具说起来都是非常优秀,但真要应用到企业中时却总是捉肘见襟。想要把最新技术应用到现实业务场景与技术环境,中间还需要跨越很大的门槛。

2025-05-16 15:44:51 993

原创 字节跳动深度研究框架DeerFlow提示词解析 - 如何通过提示词工程驱动Multi Agents?

深度解析 DeerFlow 多智能体系统的 Prompt 工程实践

2025-05-16 15:43:21 785

原创 基于DeepSeek+RAGFlow的企业知识库搭建

随着大语言模型LLM在各个场景的落地应用,RAG(Retrieval-Augmented Generation,检索增强生成)成为提升模型实用性和准确性的关键技术。企业利用 RAG 开发智能客服,提升响应效率;科研机构整合文献资源,加速知识挖掘;开发者则打造个性化助手,满足多样化需求。如何高效准确构建各自领域的知识库成为影响检索效果的关键,本文介绍基于DeepSeek + RAGFlow的知识库搭建实践,包括以下方面:

2025-05-16 15:02:03 1023

原创 AI-Agent智能体在新零售中的应用

AI-Agent,作为一种基于人工智能技术的智能体,能够模拟人类的思维、决策和行为,在复杂的业务场景中提供智能化的服务与决策支持。在新零售领域,AI-Agent的应用不仅提升了消费者的购物体验,还通过数据驱动和智能决策推动了零售企业的效率提升和创新发展。

2025-05-15 09:44:56 624

原创 技术总结:25个大模型推理引擎对比及多模态推理大模型实现梳理

大模型推理引擎进展,《A Survey on Inference Engines for Large Language Models: Perspectives on Optimization and Efficiency》(https://arxiv.org/pdf/2505.01658),对25个主流LLM推理引擎进行多维度评估和优化技术梳理。

2025-05-15 09:41:03 808

原创 GraphRAG的100%!把Agent接入知识图谱,自主精准找到数据!与LangGraph融合最终形态!

动手做过Agent项目的朋友都知道!Agent实在太难控!让他往东,偏往西!特别在MAS(多智能体系统)上!我们用大量数据微调,以为能得到一个稳定答案但,太天真!

2025-05-14 11:42:37 696

原创 MCP、RAG、Function Calling、Agent与微调如何重塑未来应用

2025年,AI技术正经历从“模型崇拜”到“场景适配”的深刻转变。企业不再满足于通用模型的“平均能力”,而是通过**MCP、RAG、Function Calling、Agent与微调**等技术组合,搭建适配业务的“AI乐高”。这些技术如何定义边界?如何协同创造价值?本文将从定义与核心功能、优劣势对比、场景应用三个维度为大家拆解,希望能有所帮助。

2025-05-14 11:39:36 983

原创 在私有数据上进行智能搜索和分析的工具DeepSearcher

DeepSearcher 结合推理LLMs(OpenAI o1、o3-mini、DeepSeek、Grok 3、Claude 3.7 Sonnet、QwQ 等)和向量数据库(Milvus、Zilliz Cloud 等)以对私有数据进行搜索、评估和推理,提供高度准确的答案和全面报告。此项目适用于企业知识管理、智能问答系统和信息检索场景。

2025-05-14 11:01:10 749

原创 大模型蒸馏技术的演进历史与实现原理

知识蒸馏技术是模型轻量化小型化的一种方式,其效果也远超我们的想象

2025-05-14 10:59:36 902

原创 AgentClinic:模拟临床医疗环境的多模态大模型智能体评估基准

在临床场景中评估大型语言模型(LLM)对于评估其潜在的临床效用至关重要。现有的基准测试主要依赖于静态问答,这不能准确描述临床决策的复杂性和顺序性。在这里,我们介绍AgentClinic,一个用于评估模拟临床环境中LLM的多模态代理基准测试,其中包括患者互动、在不完整信息下进行的多模态数据收集,以及各种工具的使用,从而在九个医学专业和七种语言中进行深入评估。我们发现,在AgentClinic的顺序决策格式中解决MedQA问题要困难得多,导致诊断准确率可能降至原始准确率的十分之一以下。总体而言,我们观察到,来自

2025-05-14 10:58:35 710

原创 三大行业案例:AI大模型+Agent实践全景

本文将从AI Agent和大模型的发展背景切入,结合51Talk、哈啰出行以及B站三个各具特色的行业案例,带你一窥事件驱动架构、RAG技术、人机协作流程,以及一整套行之有效的实操方法。具体包含内容有:51Talk如何让智能客服“主动进攻”,带来约课率、出席率双提升;哈啰出行如何由Copilot模式升级为Agent模式,并应用到客服、营销策略生成等多个业务场景;B站又是如何借力大模型与RAG方法,引爆了平台的高效内容检索和强互动用户体验。

2025-05-13 10:02:54 980

原创 从基础概念到实践开发,全面解析AI Agent

本文将深入探讨**各类AI Agent**的实现原理、实际应用、优势与局限。从**简单反射型Agent到多Agent系统**,我们将解析这些模型如何赋能自动化流程、决策制定与智能问题求解。

2025-05-13 10:00:04 872

原创 阿里云服务领域Agent智能体:从概念到落地的思考、设计与实践

以ChatGPT引领的大模型在2022年底开创了新的智能能力和对话交互形式,其中基于大语言模型的**Agent(智能体**)更是引起了广泛关注,甚至被许多人认为Agent打开了通往AGI的路径,是真正能让大模型在各种应用领域落地的重要技术。因此,基于大模型的Agent技术也迎来了前所未有的快速发展阶段,随着Agent变得越来越易用和高效,未来Agent有望成为AI应用层的基本场景。

2025-05-13 09:57:05 734

原创 手把手教你使用Qwen-Agent开发智能体应用实战教程

一、环境准备1.1 安装框架

2025-05-13 09:53:33 996

原创 基于RAG创建智能体(实践篇)

今天向大家介绍一个开源系统——RAGFlow,能直接上手了解RAG的工作流,同时还能基于RAG创建面向业务场景的智能体。

2025-05-12 20:50:11 884

原创 RAGFlow:一键搭建你的专属知识库

摘要:在生成式 AI 飞速发展的当下,如何让 AI 更高效、精准地利用知识成为了关键课题,RAGFlow 便在这样的背景下应运而生。RAGFlow 是一种结合了 RAG(Retrieval-Augmented Generation,检索增强生成)和工作流优化的创新技术架构 ,旨在大幅提升生成式 AI 系统的效率和性能。简单来说,它就像是给生成式 AI 配备了一个智能助手,让 AI 在生成内容时,能更聪明、更迅速地调用外部知识库中的信息。

2025-05-12 20:49:04 558

原创 RAGFlow框架优化经验分享(附代码):图文识别+动态分块 、API调优+源码修改

很高兴能了解到很多之前没涉猎过的行业和场景,其中经常被集中问到的问题大概有四个:中小企业做RAG知识库落地选择框架哪个比较好?如果选择 RAGFlow 如何进行定制化开发?如何对文档中的图片进行识别检索?如何对复杂文档进行动态分块等。

2025-05-12 20:47:31 1011

原创 LangChain RAG入门教程:构建基于私有文档的智能问答助手

本文详述了如何通过检索增强生成(RAG)技术构建一个能够利用特定文档集合回答问题的AI系统。通过LangChain框架,可以实现超越预训练模型知识范围的定制化问答能力,适用于专业领域的精准信息检索与生成。

2025-05-11 10:45:00 946

原创 实战派!百万PV的AI产品如何搭建RAG系统?

本文揭秘RAG系统落地的三大核心阶段:上线前对数据的准备和清洗+元数据优化知识库;运行时如何确保筛选出答案,并且把更有价值答案返回给用户;上线后如何防止知识库“腐败”。附实战提示词模板和避坑技巧

2025-05-10 10:00:14 752

原创 【AI落地应用实战】DeepSeek + RagFlow + 本地私有知识库 构建本地知识库系统实战指南

大模型应用的关键,不只是构建好模型算法,更重要的是做好数据的处理、挖掘等问题。数据贯穿了大模型从预训练到产业落地的全过程。一定程度上,智能时代,**企业数据处理****能力有多强,决定了业务发展的天花板有多高。

2025-05-10 09:56:59 760

原创 大模型垂直行业工程化落地的五大策略与未来趋势(提示词-微调-RAG-预训练-混合模式)

当前以DeepSeek等开源大模型及国内商业大模型,在各行逐步落地,但不同企业**算力资源、数据资源、业务场景及规模有较大差异**,如何建设符合自身需求的大模型,需要制定相应落地策略。下文详细解析**大模型与行业专业知识结合**的可能方式,涵盖**适用场景、技术难度、实现方法、准备条件、数据集及格式**等关键要素。

2025-05-09 14:59:35 846

原创 基于bge-m3的焊接垂直领域语义向量模型微调

万物皆可 Embedding,尤其在推荐系统、自然语言处理以及计算机视觉等领域,它类似于“**人类大脑感知神经**”,承担着至关重要的角色。其核心在于**将高维且稀疏的数据转化为低维且密集的向量形式**,这样的转换有助于揭示数据中的语义或特征联系。具体而言,Embedding 通过多维密集向量来表征事物的各种属性,进而在一个连续的向量空间内描绘出不同事物之间的相似性与差异。采用这种方式,不仅计算效率得到提升,而且模型对于数据深层次结构和关系的把握能力也得到了加强。

2025-05-09 14:56:03 1024

原创 Llama3垂直领域微调-医疗问答

要开展微调工作,首要任务是准备相应的微调数据。倘若拥有大量高质量的中文数据以及充足的计算资源,那么先基于中文数据进行中文微调,随后再开展场景适配微调,这种做法是切实可行的。不过,鉴于算力资源的限制,本文仅基于少量数据开展场景适配微调。

2025-05-09 14:54:28 1019

原创 基于LangChain ReAct Agents构建RAG问答系统

基于 LangChain ReAct Agents 和 Qdrant,我们构建了一个功能强大的 RAG 系统。这种方法不仅可以检索私有文档的信息,还能通过多步推理来获取文档中没有直接提及的内容,从而提升 LLM 的回答质量。本文使用的LLM、向量数据库等工具仅供参考,你可以根据自己的业务需求,选择合适的工具。

2025-05-08 11:42:06 563

原创 如何玩转生成式RAG工具LangChain,轻松构建应用程序?【大模型行业应用实践系列】

template = “我有{k}个问题,{this}。在上面的示例中,我们定义了一个包含两个变量的 Prompt 模板。通过将该模板与 LLM 结合到 LLMChain 中,我们就可以直接调用 Chain,并传入变量值,从而自动构建完整的提示字符串并发送给 LLM。通过这五个简单而实用的步骤,我们就能基于 LangChain 框架,开发出一款强大的领域知识问答应用。而这只是 LangChain 的冰山一角。

2025-05-08 11:40:18 566

原创 如何在 Java 中基于 LangChain 编写大语言模型应用

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。LangChain 提供的输出解析器可以帮助我们对语言模型的响应进行结构化处理,例如,以 Java 的 POJO 的形式从输出中提取信息。

2025-05-08 11:35:29 983

原创 一文读懂多模态大模型微调,武大发布最全综述!

模态大语言模型(MLLMs)展现出卓越的通用能力,在视觉与语言推理任务中表现出色,并具备一定的跨任务泛化能力。但是,其在某些下游领域的应用能力有限。通过在下游数据上进行微调,MLLM能够灵活适配多种任务,从视觉问答到医学诊断等领域,展现出惊人的潜力。这是否意味着MLLM的下游微调已发展到足以应对不同领域的复杂挑战,并有效解决模型迁移与泛化问题的程度?不同类型的微调方法在应对这些挑战时各有哪些优势和不足?

2025-05-07 15:38:07 875

原创 DeepSeek-R1-7b全量微调(SFT)技术教程

微调(Fine-tuning)是一种典型的大模型(LLM)后训练技术,通过特定领域的数据对预训练模型的参数进行调整,使其适应新任务或领域。模型本身的权重被修改,从而内化新知识。特别适用于医疗、法律、教育等垂直领域的大模型应用。大模型微调包括有监督微调(SFT)和参数高效微调(PEFT)两种方式。SFT一般需要对预训练模型所有参数进行更新,所以也叫全参数微调、全量微调。

2025-05-07 15:37:10 1026

原创 从零开始构建AI智能体

Agent是一种能够代表用户自主完成任务的系统。传统软件是工具,用户操作它完成任务;而 Agent 是助手,它代表用户完成任务。它不仅能执行指令,还能理解上下文、做出判断、调用工具、处理异常,甚至在失败时主动交还控制权。使用大语言模型(LLM)驱动决策与执行动态调用工具(API、MCP、函数等),与外部系统交互拥有明确的行为指令与安全边界简单的聊天机器人或单轮对话系统不属于 Agent 范畴。

2025-05-06 19:53:08 693

原创 Agent架构解析及分布式Agent协作方案

AI Agent(智能体)系统发展迅猛,且关注点已经不再局限在Agent的规划推理等基本能力,智能体系统在扩展性、互操作、安全性等工程化方面的挑战也越来越引起重视,比如最近的MCP和A2A。上一篇我们介绍了A2A,今天接着再聊聊分布式Agent系统的话题。Agent 有效减少人类工作总量,人与 AI 协作才是最终形态。人类与 AI 交互可大致 分为三种模式。Embedding 模式中大模型可以填补一些信息缺失,完成少量子任务,例 如总结信息等等。用户最终会整合挑选 AI 提供的信息,并自主完成任务。

2025-05-06 19:52:04 713

原创 AI Agent为何突然爆火?一文讲透它的原理与未来

想象你的冰箱不仅能自动补货,还会根据你的浏览记录建议改用杏仁奶——这就是AI Agent的魔力!简单来说,AI Agent是具备自主决策能力的智能系统,它能:✅ 感知环境✅ 处理信息✅ 做出行动就像一名全能型数字助理,它不再局限于简单的互动响应。

2025-05-06 19:50:52 821

原创 大厂大模型必知的5种agent模式

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。天道酬勤,你越努力,就会成为越优秀的自己。

2025-05-05 20:24:18 902

原创 多模态数据融合方法介绍

医疗保健领域的机器学习方法传统上专注于使用单一模态数据,这限制了它们有效复制整合多种信息源以改进决策的临床实践的能力。临床医生通常依赖各种数据源,包括患者的人口统计信息、实验室数据、生命体征和各种影像数据模态,来做出明智的决策并将他们的发现与实际情况联系起来。机器学习的最新进展促进了多模态数据的更高效整合,从而产生了能够更好地代表临床医生诊疗方法的应用程序。

2025-05-05 20:10:16 1002

原创 CHIL | Health-LLM: 在健康预测任务上的大模型能力探索

作者最终采用自然语言字符串形式,因为它简单有效且广泛接受,,通过采用特殊符号(如NaN)处理缺失值。还受到生物传感数据按特定时间窗口(每日、每周、每月)组织的进一步影响,组织不同时间窗口的时序字符串提供给大模型。

2025-05-05 20:09:30 715

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除