自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1998)
  • 收藏
  • 关注

原创 大厂落地实战!深度拆解飞猪「问一问」架构设计,看大模型如何解决复杂旅行痛点!

在旅游这个极度非标、决策链路极长且对实时库存要求极高的场景下,如何用 AI 解决的不仅仅是“去哪玩”,而是“怎么去、住哪儿、多少钱”的闭环问题?飞猪「问一问」是我们交出的一份答卷。从最早的地图规划工具,到如今基于多智能体(Multi-Agent)协作、直连实时价库的 AI 旅行管家,我们将行程规划效率提升了 90% 以上。本文将复盘这一路的技术演进、架构决策以及那些我们踩过的“坑”。1 起心动念:为什么我们需要一个“不只是聊天”的 AI?

2026-01-09 21:44:57 583

原创 CoDA 从入门到精通:阿里开源分层 RL 框架,攻克上下文爆炸,收藏这一篇就够了!

通过强化学习(RL)训练的大语言模型(LLM)智能体在解决复杂多步骤任务方面展现出巨大潜力。然而,其性能常常受限于上下文爆炸(Context Explosion)问题,其表现为:随着任务复杂度提升,LLM需多次调用外部工具查询,从而产生冗长的工具检索输出。由于现有方法主要将检索结果直接拼接至上下文,这对智能体的上下文管理能力提出极高要求;而当前大模型的有限上下文窗口在处理冗长输入时会限制其推理能力。为应对这一问题,,通过解耦高层策略规划与底层任务执行,有效缓解了上下文过载问题。研究团队还提出一种。

2026-01-09 21:44:20 496

原创 AI大模型进阶:从Prompt Engineering到Agentic Engineering,构建下一代软件架构!

8、第8层:智能体编排层使智能体能够执行工作流、与其他智能体交互,并在工具和环境中进行协调。包括 AgentScope Java、Spring AI Alibaba、LangGraph、Autogen、LlamaIndex、Swarm、Eino 等。9、第九层:智能体认证层处理智能体在可信生态系统内的安全身份、访问控制和基于角色的权限。包括 AWS AgentCore Identity、Azure Entry Agent ID 等。10、第十层:智能体可观测层。

2026-01-09 21:43:45 603

原创 AEnvironment 从入门到精通:面向 Agentic RL 时代的万物互联环境系统,收藏这一篇就够了!

AEnvironment(简称 AEnv)是一个面向 Agentic RL(Reinforcement Learning,简称 RL) 时代的统一环境平台,以 “Everything as Environment” 为核心理念。它通过拓展标准化的 MCP 协议和高性能的 ASandbox 运行时,为环境提供者、算法开发者和智能体开发者提供了一套开箱即用的基础设施,让开发者聚焦于智能体能力本身而非环境搭建的繁琐细节。

2026-01-09 21:43:11 607

原创 普通RAG已不够看!Agentic RAG才是大模型落地的未来!一文讲透从原理到企业级架构。

RAG 全称是 Retriеval-Augmented Generation(检索增强生成),它是一种结合了信息检索与文本生成的技术架构。简单来说,就是让大模型在回答问题前,先去“查阅资料”,然后基于查到的内容进行回答。工作流程:用户提问 → 向量检索 → 拼接提示 → 生成回答。这种模式有效缓解了大模型“胡说八道”(幻觉)的问题。

2026-01-09 21:42:31 366

原创 GaussDB-Vector 从入门到精通:面向大模型的大规模持久化实时向量数据库,收藏这一篇就够了!

2.1 总体框架如图1所示,GaussDB-Vector 的整体框架由编程接口层、CN层、DN层及底层硬件支撑四部分构成。编程接口层提供 SQL、Python 等多语言交互方式,满足不同开发场景的接入需求。CN层承担优化器、数据与查询路由功能,并配合集群管理、全局事务管理模块,实现负载均衡与分布式协调。DN层是核心功能载体:一方面支持 FloatVector 等多类型向量,提供 IndexScan 等向量操作接口;

2026-01-09 21:41:36 410

原创 大模型应用层开发必备!政务网站资讯日报自动化实战:从采集到LLM生成的全链路落地!

跳出这个项目来看,这类需求其实非常普适。政策研究机构追踪部委公告、行业协会收集会员单位新闻、企业市场部监控行业资讯、投资机构追踪标的公司公告,本质上都是"从若干固定信息源定期采集增量内容"。这类需求的共同特点是目标网站技术上不复杂、需要增量监控而非一次性采集、对实时性要求不高、体量也不大。大模型的成熟给这类需求解锁了一些新的可能。以前信息采集就只是采集,输出的是原始素材,后续的摘要、加工、分发还得人工来。现在可以做到多篇新闻自动聚合摘要、生成结构化的日报输出、甚至用多模态模型生成可视化的信息图。

2026-01-09 21:40:34 591

原创 【小白必看】强模型≠好智能体!架构才是王道:2大核心架构+9种设计模式,让AI应用性能起飞

本文详解智能体应用的两大核心架构(单智能体与多智能体)及九种设计模式,强调架构设计比选择强大大模型更重要。文章通过实际案例与决策框架,帮助开发者根据应用场景选择合适的架构类型和设计模式,构建高效可用的智能体应用。

2026-01-08 14:22:58 696

原创 【干货】大模型路由黑科技:PersonalizedRouter如何让AI“读懂“用户心?附代码+论文,小白也能上手!

UIUC研究团队提出PersonalizedRouter个性化大模型路由框架,通过图神经网络从历史交互数据中学习用户隐藏偏好特征,将LLM选择建模为链接预测问题。该方法在多成本-性能权衡和LLM-as-a-Judge两种评估策略下表现优异,在PersonaRoute-Bench大规模评测基准中显著超越现有方法,证明了"以用户为中心"的LLM路由在大规模应用中的可行性和有效性。

2026-01-08 14:21:30 671

原创 别再被大模型部署劝退了!推理引擎让你秒变AI部署大神,5分钟从小白到专家!

大模型部署与训练有本质区别,部署需高性能、低延迟和高吞吐等特性。推理引擎作为桥梁,将训练好的模型转化为生产状态。部署方式有两种:一是使用开发框架如魔塔、huggingface,灵活但并发性差;二是借助推理框架如vllm、SGLang,可提升并发和处理能力。部署前需确定硬件平台,再选择合适的推理引擎和模型。理解推理引擎有助于在有限资源中进行极致优化,提升资源利用率。

2026-01-08 14:20:27 809

原创 什么是语义缓存?为什么它对你的 AI 应用那么重要?

尽管硬件强大且流水优化,AI 模型常常会反复重复重复相同的工作。当你提出类似问题时,模型会从头开始计算所有内容。这导致资源浪费、延迟增加和不必要的成本。语义缓存成为了解决这个问题的方案。什么是语义缓存?简单来说,这就像赋予人工智能一个“记忆”,让它识别问题的含义(语义),而非精确拼写。举例来说:问:“我如何在 AWS 上部署 FastAPI 应用?后问:“在 AWS 上托管 FastAPI 的最佳方式是什么?模型不会重新计算答案,而是识别这两个问题的含义相同,并快速高效地检索之前存储的回答。

2026-01-08 14:19:26 417

原创 从“搜索引擎“到“备忘录“:RAG与CAG技术选型指南,小白也能秒变AI专家!

文章详细对比了两大大模型知识整合技术:检索增强生成(RAG)和缓存增强生成(CAG)。RAG通过实时检索获取最新信息,适合动态知识场景;CAG预加载信息到缓存,追求高效响应,适用于稳定知识领域。文章解析了两者工作原理、优劣势、适用场景及行业应用案例,指出混合方案可能成为未来趋势,帮助开发者在性能与准确性间找到平衡。

2026-01-08 14:18:55 466

原创 AI代理终于“开窍“了!普林斯顿AutoTool框架让大模型学会动态选择工具,小白也能玩转大模型

普林斯顿大学提出AutoTool框架,解决大模型只能使用固定工具的痛点。通过构建200k规模动态工具数据集、Embedding-Anchored Selection机制和双阶段优化pipeline,使大模型能像人类一样动态选择并调用外部工具。实验证明,该框架在数学、科学推理等多领域表现优异,接近"上帝视角"性能,且基于中小参数模型就能超越大模型+固定工具组合。

2026-01-08 14:18:12 763

原创 Langchain中间件-LLM工具模拟器

主要用于测试目的,用 AI 生成的模拟数据代替实际的工具调用。在开发过程中,工具的功能未开发完成,或者不想调用外部付费的工具,这时候可以使用 LLMToolEmulator 模拟工具调用,跑通 Agent 的测试。tools: 字符串 | BaseTool 列表,要模拟的工具名称(字符串)或 BaseTool 实例列表。如果为 None(默认),模拟所有工具。如果为空列表,则不会模拟任何工具。

2026-01-08 14:14:58 735

原创 多模态基础模型篇BLIP详解

BLIP既可以做内容理解,还可以做文本生成,是一个大一统的多模态预训练框架,并且提出了通过引导 caption 来去除噪声的方法。(理解+生成)BLIP在各个下游任务上展现出了强大的性能,并且具有 zero-shot 的能力。

2026-01-08 14:13:07 470

原创 LangChat AI评审功能:纯Java生态的智能文档审阅方案

行业术语库:建立行业专用的术语规范库企业风格指南:配置符合企业品牌的表达规范多级评审流程:构建初级、中级、高级的多层次评审体系。

2026-01-08 14:12:13 478

原创 一文理清21种关键的智能体设计模式(全文1.5万字)

短短两年间,AI范式发生了巨大转变,从简单自动化迈向复杂自主系统。最初,工作流依赖基础提示和触发器,利用LLM处理数据。随后,检索增强生成(RAG)技术出现,通过事实信息提升模型可靠性。接着,单体智能体诞生,能够调用多种工具。如今,我们正步入智能体AI时代,多个专业智能体协作完成复杂目标,AI的协同能力实现了质的飞跃。图2:AI范式变化,从LLM到RAG,到智能体RAG,最终迈向智能体AI。

2026-01-08 14:11:26 697

原创 捡到宝了!Milvus + 最强 Gemini 3 Pro 搭建 RAG,保姆级免费教程,建议收藏!

最大的亮点或许是Google Antigravity就在昨天晚上,Gemini 3 Pro 正式发布了。作为迄今为止最强推理,最强多模态理解,以及最强智能体和vibe coding的模型,Gemini 3 Pro只发了一篇博客,就掀翻了Hacker News, Reddit等平台讨论区,就连OpenAI CEO奥特曼,也亲自发推祝贺是的,用了这么多最字,但并不违反广告法。

2026-01-07 15:20:57 674

原创 医疗法律 RAG 容错率为零?抛弃单向量检索!多向量列方案深度解析,干货太硬核了!

*这里先重点说第一步 ——**

2026-01-07 15:19:04 299

原创 大厂架构复盘!Reddit 面对亿级流量,为什么弃用 Milvus 选择了它?Pgvector/Redis/Qdrant 深度测评!

业务团队可能说他们想要个负重一吨,时速两百公里的马车……现如今,借助向量检索能力,实现基于语义相似度的智能搜索,已经是所有电商、推荐、社区平台技术架构的重要一环。作为拥有约 1.08 亿日活、 11 亿月活用户的兴趣内容社区平台, Reddit自然也不例外。自2024 年起,Reddit 各个团队就已经开始用不少方案来做近似最近邻(ANN)向量搜索。

2026-01-07 15:17:56 779

原创 震惊!Claude Skills解决大模型token爆炸问题,小白程序员也能轻松掌握!

本文详细解析了Anthropic Claude Skills工具及其与Prompts、Projects、Subagents、MCP的区别与关系。Skills通过将专业技能封装为可复用、持久化的指令模板,解决了传统AI Agent的指令遗忘问题,采用渐进式披露机制大幅降低token消耗。文章Skills与MCP互补而非替代关系,并以claude-context为例提供了详细的实操步骤,展示了如何创建Skills并应用于Milvus代码库搜索,帮助开发者提升AI应用效率。

2026-01-07 15:16:25 279

原创 Context Pruning全攻略:RAG效果提升的关键,带你从零掌握高质量上下文剪枝技术!

Context Pruning如何结合rerank,优化RAG上下文?现如今,LLM的上下文窗口长度正在经历爆发式增长。翻开LLM Leaderboard,可以发现顶级模型的上下文长度已经陆续突破了1M tokens,并且这个数字还在不断刷新。但问题也随之而来:模型能够支持长上下文,那我们就能随心所欲往里面塞内容,输入越多,模型输出效果越好吗?答案当然是否定的。毕竟,往模型里塞进一百万个tokens,可能不仅大部分信息都没有用,导致浪费计算资源,还可能干扰模型的判断,导致生成质量下降。如何精细化地管理和优化

2026-01-07 15:13:57 279

原创 LangChain 杀疯了!DeepAgents 横空出世,长任务稳健不崩,高可控简直无敌!

任务规划(Planning):使用内置和read_todos工具将复杂任务分解为结构化待办事项列表,agent 按列表执行并标记完成状态。文件系统访问(Computer Access):提供lsread_filewrite_fileedit_fileglobgrep等工具,让 agent 能够读写文件、搜索文件内容。大型工具调用结果自动保存到文件,避免消耗上下文窗口。子 agent 委托(Sub-agent Delegation):通过task。

2026-01-07 15:13:13 277

原创 别再说RAG过时了!Context Engineering系列一:掌握这10个上下文处理技巧,效果翻倍!

RAG效果不及预期,试试这10个上下文处理优化技巧**在这个过程中,检索效率、准确性、成本、响应速度,都是重点关注问题。那么,如何对其进行优化?业内一致看好Context Engineering也就是上下文工程。本系列文章,将从上下文工程的不同环节(上下文处理与生成、上下文处理、上下文管理)最新的行业探索与进展,进行解读。本文为系列第一篇,上下文处理篇。

2026-01-07 15:12:31 277

原创 知识库检索总是不准?那是你没用混合检索+Rerank!PaddleOCR 实战技巧,这篇太值了!

在大型语言模型(LLM)的应用落地中,RAG(检索增强生成)是解决模型幻觉和知识时效性的关键技术。而在RAG的诸多场景中,基于多文档高精度智能分析与问答系统,也就是知识库又必然是我们最常遇到,且企业场景最刚需的一类。那么如何做好知识库?本文将以开源项目Paddle-ERNIE-RAG为例,对其关键技术进行说明介绍。该系统集成了以及策略,可以提升低资源环境下的检索准确率,以实现高精度多文档分析与问答。:使用在线 OCR API 进行高精度的文档布局分析(Layout Parsing)。

2026-01-07 15:11:48 605

原创 AI搜索优化教程(非常详细):从Embedding到元数据加权rerank,带你从入门到精通!

在语义相关性相近的情况下,Milvus官方文档优先出现。# 6. 基线搜索(不加 Boost Ranker)query_vector = "如何部署milvus"limit=4,print(# 7. 定义 Boost Ranker:给 is_official == true 的文档加权input_field_names=[], # Boost Ranker 要求必须为空列表params={"reranker": "boost", # 指定使用 Boost Ranker。

2026-01-07 15:10:21 893

原创 键词高亮已死?语义高亮才是王炸!解决搜索/Agent噪音的终极答案,这篇太透彻了!

本文探讨了在RAG和AI Agent场景中实现语义高亮(Semantic Highlight)的技术方案。传统基于关键词匹配的高亮方式存在只看字面不看语义的缺陷,无法满足AI时代复杂场景的需求。作者分析了市面上现有语义高亮方案的痛点:OpenSearch模型窗口小、泛化差;Provence/XProvence协议受限且中文表现不佳;Open Provence缺少中文支持。为此,团队自研了双语语义高亮模型,通过LLM标注百万级双语训练样本,基于BGE-M3 Reranker v2框架训练,实现了跨语言、高精度

2026-01-07 15:08:42 303

原创 Claude Code 一小时「复刻」谷歌一年成果,那一年能读完五年半的博士吗?

AI工具大幅提升工作效率引热议:教育模式亟待更新 摘要:近期硅谷工程师热议AI工具对工作效率的革命性提升。谷歌工程师表示,Claude Code仅用1小时就完成了团队1年的工作原型。多位从业者认为AI可将数年工作压缩至数月,显著缩短学习曲线。Hyperbolic CEO Yuchen Jin指出,若有AI辅助,其博士学业可能从5.5年缩短至1年。争议焦点在于:AI虽然提升效率,但可能削弱深度思考能力。支持者认为AI加速知识获取,反对者则强调传统学习过程培养的批判性思维不可替代。这场讨论反映出AI时代教育模式

2026-01-06 16:29:50 1159

原创 震惊!2026年AI开发神器来了!英伟达Rubin平台+开源模型,小白程序员也能秒变大神!

英伟达在CES 2026发布多项AI技术革新,包括下一代Rubin平台(六款芯片构建AI超级计算机)、Alpamayo 1开源自动驾驶模型以及物理AI模型和机器人技术。这些技术将大幅提升AI训练和推理效率,降低开发成本,为开发者提供从硬件到软件的全栈解决方案,推动AI技术在自动驾驶、机器人等领域的应用落地。

2026-01-06 16:24:01 953

原创 别再瞎折腾了!100天系统学习Agent开发,让你少走10086个坑

文章分享了作者在LLM和Agent开发过程中踩过的坑和解决方法,整理了一个《100天搞定Agent开发》的系统性学习路径。从LLM基础入门开始,逐步深入到提示词工程、工具使用、知识库、上下文工程、记忆系统等Agent核心组件,最后通过多个实战项目巩固所学。这套教程基于真实工程实践,配合主流开源框架,旨在帮助开发者少走弯路,从能写Demo走向能支撑复杂系统的Agent开发。

2026-01-06 16:23:20 749

原创 【AI炸场】3B参数碾压72B!浙大新模型让AI学会“探索“,精准控制GUI界面,小白也能上手!

InfiGUI-G1是浙江大学团队提出的新模型,通过自适应探索策略优化框架(AEPO)解决了GUI Grounding中的语义对齐瓶颈。该模型采用多答案生成、自适应探索奖励和共线惩罚三大创新机制,使小参数模型(3B/7B)在多个基准测试中超越大模型。不仅提升了"指得准"的能力,更解决了"指得对"的难题,让AI真正理解界面语义,相关代码已开源。

2026-01-06 16:22:43 247

原创 AI圈炸锅了!CMU研究揭示:小模型+大数据=大模型效果?成本直接砍半!小白程序员也能玩转!

CMU研究揭示,在检索增强生成(RAG)系统中,扩大检索语料规模可显著提升性能,使小模型在大语料下达到甚至超过大模型在小语料上的表现。这种提升主要来自答案证据覆盖率的提高,而非模型利用证据能力的增强。在资源有限情况下,优先扩大检索语料比继续增加模型参数更具性价比,但语料规模扩大到一定程度后会出现边际收益递减。

2026-01-06 16:21:43 566

原创 震惊!Google数据护城河被AI攻破?大模型开发者必看:AI Agent如何颠覆传统搜索,规模速度极限挑战

本文聚焦Google数据护城河与AI Agent的突破性发展,探讨AI如何打破传统搜索边界。DataFun联合Bright Data将于1月7日举办直播,深入分析AI Agent三大特征及其在规模与速度方面的极限挑战,揭示大模型技术如何重塑信息获取方式,为开发者提供技术前沿洞察。

2026-01-06 16:20:19 830

原创 保姆级教程:Spring AI RAG知识库构建,让你的AI助手“满腹经纶“!

文章介绍了将RAG知识库接入Spring AI大模型对话的两种方法:手动查询向量数据库和使用Spring AI的QuestionAnswerAdvisor API。通过复用数据加载逻辑构建向量数据库,查询相关内容并与用户问题一起发送给大模型处理。文章分析了QuestionAnswerAdvisor的实现原理,指出其本质也是先查询向量数据库再拼接提示词,同时提及了向量数据库初始化和查询优化的重要性。

2026-01-06 16:18:00 554

原创 【干货】大模型记忆革命:HGMEM技术让AI推理能力提升73%,开发者必看

本文提出HGMEM(基于超图的记忆机制),将记忆建模为超图结构,支持高阶n元关系动态演化,结合自适应证据检索策略(局部调查+全局探索)引导精准检索。实验证明,该方法在Longbench、NarrativeQA等基准测试中表现优异,综合得分65.73%、准确率73.81%,显著超越传统RAG与多步RAG基线,为长上下文全局理解与复杂推理提供有效支撑,且成本可控。

2026-01-06 16:15:30 677

原创 “【震惊】57%企业已投产AI Agent!LangChain最新报告:Coding Agents统治程序员日常,这些坑千万别踩!“

LangChain《State of Agent Engineering》报告显示,57.3%组织已有Agent投产,主要应用于客户服务和数据分析。最大挑战是质量问题(32%)和延迟(20%)。89%组织已实施可观测性,52.4%进行离线评估。多模型策略是主流,而Coding Agents如Copilot等已成为开发者最常用工具。报告强调Agent工程是"把不确定性关进笼子"的过程,需通过可观测性、评估体系和多模型路由确保稳定可靠。

2026-01-06 16:14:40 219

原创 AI Agent开发平台大比拼:RAG、工作流、工具调用三大核心能力横评,看完直接起飞!

文章评测了四大AI Agent开发平台在RAG能力、工作流能力和工具调用能力三大核心维度的表现,腾讯云智能体开发平台多项测试领先。实战验证显示,这些平台可助力企业快速搭建智能应用,AI Agent开发已进入"下半场",竞争重点将转向场景深度适配、技术链厚度和生态广度拓展。

2026-01-05 16:56:53 849

原创 AI智能体杀疯了!大模型开发新范式,小白程序员也能“躺平“写代码?

智能体(AI Agent)能深度思考、自主规划并执行任务,改变人机协作范式。当前形成AI厂商、垂直服务商和软硬件厂商三大流派。未来垂直智能体将更早落地,硬件机会大于软件。智能体面临打破孤岛、找准场景等挑战,但已推动AI产业升级,开发者需掌握这一技术趋势。

2026-01-05 16:53:52 808

原创 震惊!大模型Agent将颠覆编程开发,小白也能秒变“人人都是开发者“?阿里云技术专家深度揭秘!

本文深入解析大模型Agent的核心价值,指出其能显著降低应用开发门槛,使非专业开发者也能轻松创建应用;通过"胶水效应"简化流程复杂度;支持多样化交互方式;并能多Agent协同完成复杂任务。尽管面临响应速度、幻觉等挑战,但技术创新正不断优化这些问题,Agent相比传统开发方式利大于弊,是值得长期投入的生产力工具。

2026-01-05 16:52:31 705

原创 小白必看!2024最全AI Agent框架大比拼:Dify/Coze/LangChain六王争霸,零代码到全栈开发一条龙指南[特殊字符]

本文系统对比分析了六大主流AI Agent框架(Dify、Coze、n8n、AutoGen、LangChain、CrewAI)的核心能力、技术特点和适用场景。从开发难度、语言支持、多Agent协作能力等维度进行横向评估,并根据快速原型开发、企业级应用、科研协作等不同场景提供选型建议。帮助开发者根据团队技术能力和项目需求,选择最适合的智能体框架,降低AI应用开发门槛,提升开发效率。

2026-01-05 16:51:43 735

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除