问题描述
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
提示:
1 <= n <= 45
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
import time
# 方法一 这个方法算45要算到明年
n = int(input())
count = 0
start = time.time()
def back(n):
global count
if n <= 0:
count += 1
return
if n >= 2:
for i in range(1,3):
n -= i
back(n)
n += i
else:
count += 1
return
back(n)
print(count)
print(time.time()-start)
# 方法二 好像算45也没有很快 方法二是网上教学的解法
n = int(input())
count = 0
start = time.time()
def back(n):
if n == 1:
return 1
elif n == 2:
return 2
else:
return back(n-1)+back(n-2)
print(back(n))
print(time.time()-start)
两个方法都采用了递归的方式,但是方法二采用了观察规律的解法,更加高效