字符串压缩算法

目录

RLE(游程长度编码)

算法原理

步骤说明

示例说明

代码示例

python语言:

C语言:

优缺点

Huffman编码

基本原理

构造Huffman树

编码与解码过程

代码示例

python语言:

C语言:

优缺点

LZW压缩

字典构建与压缩过程

步骤说明

代码示例

python语言:

C语言:

优缺点


字符串压缩算法用于减少字符串的存储空间,尤其是在需要传输或保存大量文本数据时。以下是三种常见的字符串压缩算法:RLE、Huffman编码和LZW压缩。

RLE(游程长度编码)

算法原理

游程长度编码(Run-Length Encoding,RLE)是一种简单的压缩算法,主要针对字符串中连续重复的字符。该算法通过记录每个字符的重复次数来实现压缩。

步骤说明

  1. 遍历字符串,记录每个字符及其连续出现的次数。
  2. 生成一个新的字符串,其中每个字符后面跟着其出现的次数。

示例说明

考虑字符串 "AAAABBBCCDAA"

  • 第1步:找到字符 A 连续出现了4次,记为 "4A"
  • 第2步:找到字符 B 连续出现了3次,记为 "3B"
  • 第3步:字符 C 连续出现2次,记为 "2C"
  • 第4步:字符 D 出现1次,记为 "1D"
  • 第5步:字符 A 连续出现2次,记为 "2A"

最终压缩结果为 "4A3B2C1D2A"

代码示例

python语言:

def rle_encode(data):
    encoding = ''
    i = 0

    while i < len(data):
        count = 1
        while i + 1 < len(data) and data[i] == data[i + 1]:
            i += 1
            count += 1
        encoding += str(count) + data[i]
        i += 1

    return encoding

# 示例使用
input_string = "AAAABBBCCDAA"
encoded_string = rle_encode(input_string)
print(encoded_string)  # 输出: "4A3B2C1D2A"

C语言:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char *rleEncode(const char *data) {
    int dataLength = strlen(data);
    char *encoding = (char *)malloc(2 * dataLength * sizeof(char));
    int encodingIndex = 0;
    int i = 0;

    while (i < dataLength) {
        int count = 1;
        while (i + 1 < dataLength && data[i] == data[i + 1]) {
            i++;
            count++;
        }
        int countDigits = 0;
        int tempCount = count;
        while (tempCount > 0) {
            tempCount /= 10;
            countDigits++;
        }

        int digitIndex = countDigits;
        tempCount = count;
        while (tempCount > 0) {
            encoding[encodingIndex + digitIndex--] = '0' + tempCount % 10;
            tempCount /= 10;
        }

        encoding[encodingIndex + countDigits] = data[i];
        encodingIndex += countDigits + 1;
        i++;
    }

    encoding[encodingIndex] = '\0';
    return encoding;
}

int main() {
    const char *inputString = "AAAABBBCCDAA";
    char *encodedString = rleEncode(inputString);
    printf("%s\n", encodedString);
    free(encodedString);
    return 0;
}

优缺点

  • 优点:RLE算法实现简单,适用于字符重复较多的场景。
  • 缺点:对于字符重复较少的字符串,RLE可能会增加字符串的长度而非压缩。

Huffman编码

基本原理

Huffman编码是一种基于字符出现频率的无损压缩算法。它通过构建一棵Huffman树,为出现频率较高的字符分配较短的二进制编码,频率较低的字符分配较长的二进制编码,从而达到压缩的目的。

构造Huffman树

  1. 计算每个字符的出现频率。
  2. 创建一个优先队列,将每个字符及其频率作为一个叶节点插入队列。
  3. 取出队列中频率最低的两个节点,创建一个新的父节点,其频率为两个节点频率之和,并将该父节点插回队列。
  4. 重复步骤3,直到队列中只剩下一个节点,该节点即为Huffman树的根节点。

编码与解码过程

  • 编码:从根节点出发,沿着树向下遍历,每向左走一步,记为 0,向右走一步,记为 1,直到达到叶节点。这样,每个字符都有一个唯一的二进制编码。
  • 解码:从压缩后的二进制字符串出发,沿着Huffman树进行解码,直到恢复出原始字符串。

代码示例

python语言:

import heapq
from collections import defaultdict, Counter

class HuffmanNode:
    def __init__(self, char, freq):
        self.char = char
        self.freq = freq
        self.left = None
        self.right = None

    def __lt__(self, other):
        return self.freq < other.freq

def build_huffman_tree(text):
    frequency = Counter(text)
    heap = [HuffmanNode(char, freq) for char, freq in frequency.items()]
    heapq.heapify(heap)

    while len(heap) > 1:
        node1 = heapq.heappop(heap)
        node2 = heapq.heappop(heap)
        merged = HuffmanNode(None, node1.freq + node2.freq)
        merged.left = node1
        merged.right = node2
        heapq.heappush(heap, merged)

    return heap[0]

def build_codes(node, prefix='', codebook={}):
    if node is not None:
        if node.char is not None:
            codebook[node.char] = prefix
        build_codes(node.left, prefix + '0', codebook)
        build_codes(node.right, prefix + '1', codebook)
    return codebook

def huffman_encode(text):
    root = build_huffman_tree(text)
    codebook = build_codes(root)
    return ''.join(codebook[char] for char in text), codebook

# 示例使用
text = "AAAABBBCCDAA"
encoded_text, huffman_codebook = huffman_encode(text)
print(f"Encoded: {encoded_text}")  # 输出压缩后的二进制字符串
print(f"Codebook: {huffman_codebook}")  # 输出字符到二进制的映射

C语言:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// 哈夫曼树节点结构体
typedef struct HuffmanNode {
    char character;
    int frequency;
    struct HuffmanNode *left;
    struct HuffmanNode *right;
} HuffmanNode;

// 创建新的哈夫曼节点
HuffmanNode *createHuffmanNode(char character, int frequency) {
    HuffmanNode *newNode = (HuffmanNode *)malloc(sizeof(HuffmanNode));
    newNode->character = character;
    newNode->frequency = frequency;
    newNode->left = NULL;
    newNode->right = NULL;
    return newNode;
}

// 交换两个哈夫曼节点
void swapHuffmanNodes(HuffmanNode **a, HuffmanNode **b) {
    HuffmanNode *temp = *a;
    *a = *b;
    *b = temp;
}

// 下调整个最小堆,保持堆的性质
void minHeapify(HuffmanNode **heap, int size, int index) {
    int smallest = index;
    int left = 2 * index + 1;
    int right = 2 * index + 2;

    if (left < size && heap[left]->frequency < heap[smallest]->frequency)
        smallest = left;

    if (right < size && heap[right]->frequency < heap[smallest]->frequency)
        smallest = right;

    if (smallest!= index) {
        swapHuffmanNodes(&heap[index], &heap[smallest]);
        minHeapify(heap, size, smallest);
    }
}

// 构建最小堆
void buildMinHeap(HuffmanNode **heap, int size) {
    for (int i = (size / 2) - 1; i >= 0; i--)
        minHeapify(heap, size, i);
}

// 提取最小频率的节点
HuffmanNode *extractMin(HuffmanNode **heap, int *size) {
    if (*size <= 0)
        return NULL;

    HuffmanNode *minNode = heap[0];
    heap[0] = heap[(*size) - 1];
    (*size)--;
    minHeapify(heap, *size, 0);
    return minNode;
}

// 插入节点到最小堆
void insertNode(HuffmanNode **heap, int *size, HuffmanNode *node) {
    (*size)++;
    int i = (*size) - 1;

    while (i && node->frequency < heap[(i - 1) / 2]->frequency) {
        heap[i] = heap[(i - 1) / 2];
        i = (i - 1) / 2;
    }

    heap[i] = node;
}

// 构建哈夫曼树
HuffmanNode *buildHuffmanTree(char *text) {
    int frequency[256] = {0};
    int length = strlen(text);

    for (int i = 0; i < length; i++)
        frequency[(int)text[i]]++;

    HuffmanNode **heap = (HuffmanNode **)malloc(length * sizeof(HuffmanNode *));
    int size = 0;

    for (int i = 0; i < 256; i++) {
        if (frequency[i] > 0) {
            heap[size++] = createHuffmanNode((char)i, frequency[i]);
        }
    }

    buildMinHeap(heap, size);

    while (size > 1) {
        HuffmanNode *left = extractMin(heap, &size);
        HuffmanNode *right = extractMin(heap, &size);

        HuffmanNode *merged = createHuffmanNode('\0', left->frequency + right->frequency);
        merged->left = left;
        merged->right = right;

        insertNode(heap, &size, merged);
    }

    HuffmanNode *root = extractMin(heap, &size);
    free(heap);

    return root;
}

// 深度优先遍历构建编码表
void buildCodes(HuffmanNode *root, char *prefix, int prefixLength, char **codebook) {
    if (root->left) {
        prefix[prefixLength] = '0';
        buildCodes(root->left, prefix, prefixLength + 1, codebook);
    }

    if (root->right) {
        prefix[prefixLength] = '1';
        buildCodes(root->right, prefix, prefixLength + 1, codebook);
    }

    if (root->character!= '\0') {
        prefix[prefixLength] = '\0';
        codebook[(int)root->character] = strdup(prefix);
    }
}

// 哈夫曼编码函数
void huffmanEncode(char *text) {
    HuffmanNode *root = buildHuffmanTree(text);

    char prefix[256] = {0};
    char **codebook = (char **)malloc(256 * sizeof(char *));

    buildCodes(root, prefix, 0, codebook);

    printf("Encoded: ");
    int length = strlen(text);
    for (int i = 0; i < length; i++) {
        printf("%s", codebook[(int)text[i]]);
    }
    printf("\n");

    printf("Codebook:\n");
    for (int i = 0; i < 256; i++) {
        if (codebook[i]!= NULL) {
            printf("%c: %s\n", (char)i, codebook[i]);
            free(codebook[i]);
        }
    }

    free(codebook);
}

// 测试示例
int main() {
    char text[] = "AAAABBBCCDAA";
    huffmanEncode(text);

    return 0;
}

优缺点

  • 优点:Huffman编码能够显著减少高频字符的编码长度,实现高效压缩。
  • 缺点:构造Huffman树的过程相对复杂,对于频率较为均匀的字符,压缩效果有限。

LZW压缩

字典构建与压缩过程

LZW(Lempel-Ziv-Welch)是一种基于字典的无损压缩算法。它通过动态构建字典,将字符串中的重复模式编码为较短的二进制串,从而实现压缩。

步骤说明

  1. 初始化字典,包含所有可能的单字符模式。
  2. 从输入字符串中读取字符,寻找最长的已存在于字典中的模式。
  3. 将该模式的索引输出,并将新模式(即该模式加下一个字符)加入字典。
  4. 重复步骤2和3,直到字符串处理完毕。

示例说明

假设有字符串 "ABABABABABAB"

  • 初始字典包含所有单字符模式,如 'A': 1, 'B': 2
  • 读取字符 'A',最长匹配为 'A',输出其索引 1,并将 'AB' 加入字典。
  • 读取字符 'B',最长匹配为 'B',输出其索引 2,并将 'BA' 加入字典。
  • 继续匹配,最终压缩输出一系列索引代表原始字符串。

代码示例

python语言:

def lzw_compress(uncompressed):
    dict_size = 256
    dictionary = {chr(i): i for i in range(dict_size)}
    w = ""
    compressed_data = []

    for c in uncompressed:
        wc = w + c
        if wc in dictionary:
            w = wc
        else:
            compressed_data.append(dictionary[w])
            dictionary[wc] = dict_size
            dict_size += 1
            w = c

    if w:
        compressed_data.append(dictionary[w])

    return compressed_data

# 示例使用
input_string = "ABABABABABAB"
compressed = lzw_compress(input_string)
print(compressed)  # 输出: [65, 66, 256, 258, 260, 262]

C语言:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define DICT_SIZE 256

typedef struct {
    char *key;
    int value;
} DictionaryEntry;

DictionaryEntry *createDictionaryEntry(char *key, int value) {
    DictionaryEntry *entry = (DictionaryEntry *)malloc(sizeof(DictionaryEntry));
    entry->key = strdup(key);
    entry->value = value;
    return entry;
}

void freeDictionaryEntry(DictionaryEntry *entry) {
    free(entry->key);
    free(entry);
}

int lzwCompress(char *uncompressed) {
    DictionaryEntry *dictionary[DICT_SIZE];
    for (int i = 0; i < DICT_SIZE; i++) {
        dictionary[i] = createDictionaryEntry((char *)&i, i);
    }

    char w[1000] = "";
    int compressedData[1000];
    int compressedDataIndex = 0;

    for (int i = 0; uncompressed[i]!= '\0'; i++) {
        char wc[1000];
        strcpy(wc, w);
        strncat(wc, &uncompressed[i], 1);

        int found = 0;
        for (int j = 0; j < DICT_SIZE; j++) {
            if (strcmp(dictionary[j]->key, wc) == 0) {
                found = 1;
                strcpy(w, wc);
                break;
            }
        }

        if (!found) {
            for (int j = 0; j < DICT_SIZE; j++) {
                if (strcmp(dictionary[j]->key, w) == 0) {
                    compressedData[compressedDataIndex++] = dictionary[j]->value;
                    break;
                }
            }

            dictionary[DICT_SIZE] = createDictionaryEntry(wc, DICT_SIZE);
            DICT_SIZE++;
            strcpy(w, &uncompressed[i]);
        }
    }

    if (strlen(w) > 0) {
        for (int j = 0; j < DICT_SIZE; j++) {
            if (strcmp(dictionary[j]->key, w) == 0) {
                compressedData[compressedDataIndex++] = dictionary[j]->value;
                break;
            }
        }
    }

    for (int i = 0; i < DICT_SIZE; i++) {
        freeDictionaryEntry(dictionary[i]);
    }

    for (int i = 0; i < compressedDataIndex; i++) {
        printf("%d ", compressedData[i]);
    }
    printf("\n");

    return compressedDataIndex;
}

int main() {
    char inputString[] = "ABABABABABAB";
    lzwCompress(inputString);

    return 0;
}

优缺点

  • 优点:LZW压缩在重复模式丰富的场景下能实现很好的压缩效果,且字典动态构建,使其适应性强。
  • 缺点:初始字典大小限制了压缩的灵活性,且当模式变化频繁时,压缩效果不佳。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值