Windows电脑本地安装Stable Diffusion3.5与远程访问生成AI图片

前言

AI 技术的发展正以前所未有的速度改变着我们的生活与工作方式。尤其是对于那些追求高效和高质量作品的创作者来说,本地部署 AI 模型并实现远程访问已经不再是梦想,而是现实中的一个强大工具。

想象一下这样的场景:你是一名忙碌的设计师,每天需要处理大量的图像生成任务。传统的在线服务虽然方便,但往往受限于网络速度、数据隐私等问题。而如今,通过在自己的 Windows 系统电脑上本地部署 Stable Diffusion 3.5(简称 SD 3.5),你可以随时随地获得专业级别的图像输出,并且完全不受外部环境的限制。

无论你是专业人士还是日常用户,都能轻松获得高质量的成品,体验前所未有的创作自由!但如何在公网环境下实现便捷远程访问呢?这就需要借助 Cpolar 内网穿透工具了。通过简单的配置和操作,你无需复杂的公网 IP 设置或重复部署,就能随时随地进行高效创作。

【视频教程】

Stable Diffusion 3.5 AI绘画生成神器重磅更新!本地部署与远程使用保姆级教程

1. 本地部署ComfyUI

本篇文章测试环境:Win11专业版,8GB显存

进入到官方Github中,下载 最新版ComfyUI

ComfyUI Github:GitHub - comfyanonymous/ComfyUI: The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.

image.png

找到免安装版本

image.png

解压保存到本地打开,进入到根目录下,有 run_cpurun_nvidia_gpu 第一个是通过CPU进行解码的,第二个是通过Nvidia显卡进行解码的,速度会更快

23694ceffdf320173d0f96fcb10f5b8.png

双击打开这两个其中哪个脚本都可以,运行脚本

e700764d9b1568352ac9a732e87ebf4.png

打开一个新的浏览器输入 http://127.0.0.1:8188

可以看到进入到了ComfyUI当中,但是默认情况下是英文,需要设置成中文

659ff4e9543527493c7a67aff8ba4d8.png

下载中文语言包,点击链接:GitHub - AIGODLIKE/AIGODLIKE-ComfyUI-Translation: A plugin for multilingual translation of ComfyUI,This plugin implements translation of resident menu bar/search bar/right-click context menu/node, etc

下载压缩包并解压到本地

image.png

解压后,进入到根目录,把这个文件放到ComfyUI \ custom_nodes 目录中

image.png

da672591178014cd8a912801b5d7ec2.png

回到 Comfy UI 中,点击设置,选择语言为中文

659ff4e9543527493c7a67aff8ba4d8.png

2. 下载 Stable Diffusion3.5 模型

Stable Diffusion共发布了三款模型,分别是:

  • Stable Diffusion 3.5 Large:该基础型号拥有 80 亿个参数,质量卓越,响应迅速,是 Stable Diffusion 系列中最强大的型号。该型号非常适合 1 百万像素分辨率的专业用例。【推荐16G以上显存】

  • 稳定扩散 3.5 Large Turbo稳定扩散 3.5 Large 的精简版仅需 4 个步骤即可生成高质量图像,且具有出色的快速依从性,速度比稳定扩散 3.5 Large 快得多。【推荐8G以上显存】

  • Stable Diffusion 3.5 Medium(将于 10 月 29 日发布): 该模型拥有 25 亿个参数,采用改进的 MMDiT-X 架构和训练方法,可在消费级硬件上“开箱即用”,在质量和定制易用性之间取得平衡。它能够生成分辨率在 0.25 到 2 百万像素之间的图像。

本篇文章演示使用的是 第二种 3.5 Large Turbo版本,
点击链接下载模型:stabilityai/stable-diffusion-3.5-large-turbo · Hugging Face

找到下方这两个文件

image.png
sd3.5_large_turbo.safetensors 文件下载到 ComfyUI/models/checkpoint 文件夹中

image.png

接下来下载Clip文件, 将clip_g.safetensorsclip_l.safetensorst5xxl_fp8_e4m3fn.safetensors 下载到 ComfyUI/models/clip 文件夹

fa579cb88b378a82c749c1f05733823.png

回到ComfyUI目录中,运行一键脚本。

image.png

重新进入到浏览器当中 http://127.0.0.1:8188

image.png

3. 演示文生图

将刚才下载好的 SD3.5L_Turbo_example_workflow.json 文件拖入到ComfyUI界面中

image.png

然后在左侧Clip设置中,修改成我们刚才下载的模型

fb253960e732102dcf797b711788f6c.png

在中间的CLIP文本编码器中,输入英文提示词后,点击右侧 添加提示词队列

image.png

可以看到右侧已经生成了新的图片,我们在本地成功部署了Stable Diffusion 3.5 大模型,如果想团队协作多人使用,或者在异地其他设备使用的话就需要结合Cpolar内网穿透实现公网访问,免去了复杂得本地部署过程,只需要一个公网地址直接就可以进入到ComfyUI中来使用 Stable Diffusion 3.5文生图。

接下来教大家如何安装Cpolar并且将 Stable Diffusion 3.5 实现公网使用。

4. 公网使用Stable Diffusion 3.5 大模型

下面我们Windows安装Cpolar内网穿透工具,通过Cpolar 转发本地端口映射的http公网地址,我们可以很容易实现远程访问,而无需自己注册域名购买云服务器.下面是安装cpolar步骤

cpolar官网地址: https://www.cpolar.com

点击进入cpolar官网,点击免费使用注册一个账号,并下载最新版本的Cpolar。

img

登录成功后,点击下载Cpolar到本地并安装(一路默认安装即可)本教程选择下载Windows版本。

image-20240319175308664

Cpolar安装成功后,在浏览器上访问http://localhost:9200,使用cpolar账号登录,登录后即可看到Cpolar web 配置界面,结下来在web 管理界面配置即可。

img

4.1 创建远程连接公网地址

登录cpolar web UI管理界面后,点击左侧仪表盘的隧道管理——创建隧道:

  • 隧道名称:可自定义,本例使用了: comfyui注意不要与已有的隧道名称重复

  • 协议:http

  • 本地地址:8188

  • 域名类型:随机域名

  • 地区:选择China Top

  • 高级:Http Auth:user:123(本例中用户名user 密码123)

点击保存

a0d48c019aced2bafd9a8f3dbaef29b.png

创建成功后,打开左侧在线隧道列表,可以看到刚刚通过创建隧道生成了两个公网地址,接下来就可以在其他电脑(异地)上,使用任意一个地址在浏览器中访问即可。

image.png

如下图所示,输入设置的用户名及密码(也可以不设置高级,就无需用户名密码直接登入,安全起见,建议配置高级)

image.png

可以看到成功实现使用公网地址异地远程访问本地部署的 Stable Diffusion3.5大模型!

image.png

小结

为了方便演示,我们在上边的操作过程中使用了cpolar生成的HTTP公网地址隧道,其公网地址是随机生成的。这种随机地址的优势在于建立速度快,可以立即使用,然而,它的缺点是网址是随机生成,这个地址在24小时内会发生随机变化,更适合于临时使用。

如果有长期远程访问本地 Stable Diffusion3.5 或者其他本地部署的服务的需求,但又不想每天重新配置公网地址,还想地址好看又好记,那我推荐大家选择使用固定的二级子域名方式来远程访问,带宽会更快,使用cpolar在其他用途还可以保留多个子域名,支持多个cpolar在线进程。(根据cpolar套餐而定)

5. 固定远程访问公网地址

由于以上使用cpolar所创建的隧道使用的是随机公网地址,24小时内会随机变化,不利于长期远程访问。因此我们可以为其配置二级子域名,该地址为固定地址,不会随机变化。

登录cpolar官网,点击左侧的预留,选择保留二级子域名,地区选择china vip top,然后设置一个二级子域名名称,填写备注信息,点击保留。

58ba30216fa6400b776e2fc7d4a0ee7.png

保留成功后复制保留的二级子域名地址:

2ea6e20297141826df67d449ce9ba8b.png

登录cpolar web UI管理界面,点击左侧仪表盘的隧道管理——隧道列表,找到所要配置的隧道,点击右侧的编辑

4ffa78d1a0e6c06981c3b4d39227f11.png

修改隧道信息,将保留成功的二级子域名配置到隧道中

  • 域名类型:选择二级子域名

  • Sub Domain:填写保留成功的二级子域名

  • 地区: China VIP

点击更新

e629458d1edd77af3c1eca7b5354964.png

更新完成后,打开在线隧道列表,此时可以看到随机的公网地址已经发生变化,地址名称也变成了保留和固定的二级子域名名称。

image.png

最后,我们使用固定的公网地址访问 ComfyUI 可以看到访问成功,一个永久不会变化的远程访问方式即设置好了,再重新拖入文件,选择模型就可以了。

image.png

本地部署 AI 模型并实现远程访问已经成为了创作者们的一大福音,Stable Diffusion 3.5 和 Cpolar 内网穿透工具的结合,不仅提升了图像生成的质量和速度,还极大地简化了操作流程,让创作变得更加高效、便捷。

### 安装和运行Stable Diffusion于无GPU环境 尽管推荐配置包含NVIDIA GPU至少4GB显存以及10GB可用硬盘空间[^1],对于没有配备专用图形处理单元(GPU)的计算设备来说,依然存在可行方案来部署操作Stable Diffusion模型。 #### 使用云端服务替代本地GPU 一种解决方案是利用云平台提供的虚拟机实例或专门设计的服务来进行图像生成任务。这些在线资源通常能够提供强大的硬件支持,包括但不限于高性能的GPU选项如RTX 3090等型号[^2]。通过这种方式,即使用户的个人电脑缺乏必要的图形加速能力,也可以借助远程服务器的强大性能完成复杂的运算工作。 为了实现这一点,可以考虑如下几个方面: - **选择合适的云计算提供商**:寻找那些明确指出其产品兼容Stable Diffusion或其他相似AI应用的服务商; - **创建适合的工作环境**:按照服务商指南设置好开发环境,可能涉及到Docker容器化技术的应用以便快速搭建所需的软件栈; - **传输数据至云端**:如果项目涉及大量素材文件,则需规划有效的上传策略以减少等待时间; - **执行推理过程**:一旦准备工作就绪,在线平台上即可调用预训练好的神经网络进行图片合成等活动。 #### 利用CPU多核特性优化效率 当无法访问外部算力时,还可以尝试最大化发挥现有机器内部潜力的方法之一就是充分利用中央处理器(CPU)的核心数目来做并行计算。虽然这种方法远不及拥有专业级GPU那么高效,但在某些情况下仍可获得满意的结果。具体措施包括调整程序参数使更多线程参进来分担负载,或是选用经过特别编译针对特定架构做了优化版本的基础库等等。 值得注意的是,即便采取上述手段也无法完全弥补缺少专用图形芯片所带来的差距,尤其是在面对大型复杂场景的时候尤为明显。因此建议尽可能寻求具备适当条件的合作机会或者投资升级自有设施。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu/stable git clone https://github.com/CompVis/stable-diffusion-public.git cd stable-diffusion-public pip install -r requirements.txt ``` 这段命令展示了基于纯Python解释器环境下安装仅依赖CPU版PyTorch框架及其配套组件的过程,并获取开源社区维护下的Stable Diffusion仓库副本。这允许开发者在不具备任何形式独立显示适配器的情况下初步体验该算法的魅力所在。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值