链接
题目描述
给出一个环,环上有n个点,每个点有权值ai,现在每次可以把相邻的两个点合并,可以获得两点权值之和的能量,现在问N个点最后合并成一个点时,最大和最小能量分别是多少
样例输入
4
4 5 9 4
样例输出
43
54
思路
区间DP,设
f
1
i
,
j
f1_{i,j}
f1i,j为i到j的最小能量,
f
2
i
,
j
f2_{i,j}
f2i,j为i到j的最大能量,那么我们可以在i和j之间找一个转移点去转移
求最小时
f
i
,
j
=
m
i
n
(
f
i
,
j
,
f
i
,
k
−
1
+
f
k
,
r
)
f_{i,j} = min(f_{i,j}, f_{i,k-1}+f_{k,r})
fi,j=min(fi,j,fi,k−1+fk,r)
求最大时
f
i
,
j
=
m
a
x
(
f
i
,
j
,
f
i
,
k
−
1
+
f
k
,
r
)
f_{i,j} = max(f_{i,j}, f_{i,k-1}+f_{k,r})
fi,j=max(fi,j,fi,k−1+fk,r)
都要加上合并的能量(即区间和,这个用前缀和就搞定了
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int n, ans_min = 1e9, ans_max = -1e9;
int a[105], sum[250];
int f1[250][250], f2[250][250];
const int inf = 1e9;
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
for(int i = 1; i <= 2 * n; ++i)
for(int j = 1; j <= 2 * n; ++j)
if(i != j) f1[i][j] = inf, f2[i][j] = -inf;
else f2[i][j] = f1[i][j] = 0;
for(int i = 1; i <= n; ++i)
sum[i] = sum[i - 1] + a[i];
for(int i = n + 1; i <= 2 * n; ++i)
sum[i] = sum[i - 1] + a[i - n];
for(int len = 2; len <= n; ++len)
for(int l = 1; l + len - 1 <= 2 * n; ++l)
{
int r = l + len - 1;
for(int k = l + 1; k <= r; ++k)
f1[l][r] = min(f1[l][r], f1[l][k - 1] + f1[k][r]),
f2[l][r] = max(f2[l][r], f2[l][k - 1] + f2[k][r]);
f1[l][r] += sum[r] - sum[l - 1];
f2[l][r] += sum[r] - sum[l - 1];
}
for(int i = 1; i <= n; ++i)
{
ans_min = min(ans_min, f1[i][i + n - 1]);
ans_max = max(ans_max, f2[i][i + n - 1]);
}//最后要枚举环,因为环可能有多种,要全部枚举一边才可以得到最后的答案
printf("%d\n%d", ans_min, ans_max);
return 0;
}