题目: AcWing 282. 石子合并
设有 N 堆石子排成一排,其编号为 1,2,3,…,N。
每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。
每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
例如有 4 堆石子分别为 1 3 5 2, 我们可以先合并 1、2 堆,代价为 4,得到 4 5 2, 又合并 1,2 堆,代价为 9,得到 9 2 ,再合并得到 11,总代价为 4+9+11=24;
如果第二步是先合并 2,3 堆,则代价为 7,得到 4 7,最后一次合并代价为 11,总代价为 4+7+11=22。
问题是:找出一种合理的方法,使总的代价最小,输出最小代价。
输入格式
第一行一个数 N 表示石子的堆数 N。
第二行 N 个数,表示每堆石子的质量(均不超过 1000)。
输出格式
输出一个整数,表示最小代价。
数据范围
1≤N≤300
输入样例:
4
1 3 5 2
输出样例:
22
题目分析:
状态表示:f[i,j]表示区间 i 到 j 中合并成一堆的方案的集合的最小值
状态转移:
f[i,j]可能由f[i,i]+f[i+1,j]或f[i,i+1]+f[i+2,j]…f[i,j-1]+f[j,j]这些区间合并而来
区间DP的大体模板:
第一步:枚举长度
第二步:枚举起点(根据长度)
第三步:计算终点(根据起点和长度)
第四步:枚举分割点(根据起点和终点)
第五步:状态转移
#include <iostream>
using namespace std;
const int N = 305;
int s[N];// 前缀和
int f[N][N];
int n;
int main()
{
cin>>n;
for(int i=1;i<=n;i++)cin>>s[i],s[i]+=s[i-1];
for(int len=2;len<=n;len++) // 枚举长度
for(int i=1;i<=n-len+1;i++) // 枚举起点
{
int j=i+len-1; // 计算终点
f[i][j]=1e9;
for(int k=i;k<j;k++) // 枚举区间分割点
{
f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+s[j]-s[i-1]);
}
}
cout<<f[1][n]<<endl;
return 0;
}