【数论】【excrt】【exgcd】扩展中国剩余定理模板

链接

Luogu P4777

题目描述

给出一个同余方程组,不保证模数互质,求解最小正整数解

样例输入

3
11 6
25 9
33 17

样例输出

809

思路

其实就是说
因为模数不互质,那么像crt那样求逆元显然是不可行的
那我们就考虑把方程组逐条合并
M M M l c m ( m 1 ∼ m k − 1 ) lcm(m_1\sim m_{k-1}) lcm(m1mk1)
设前k-1个方程组的通解为 x + i ∗ M x + i * M x+iM
那么考虑合并第k个
设前k个通解为 x + t ∗ M x + t * M x+tM
那么也就是说
t ∗ M + x ≡ a k (   m o d   m k ) t*M + x \equiv a_k(\bmod m_k) tM+xakmodmk
那么移项可得 t ∗ M ≡ a k − x (   m o d   m k ) t*M \equiv a_k-x(\bmod m_k) tMakx(modmk)
上式用exgcd可求解(exgcd先求等于1,然后结果乘上 a k − x a_k-x akx就好了)
那么excrt其实就是求n次扩欧

代码


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long

using namespace std;

ll a[100005], b[100005];
int n;

ll mul(ll a, ll b, ll p)
{
	ll re = 0;
	while(b)
	{
		if(b & 1) re = (re + a) % p;
		a = (a + a) % p;
		b >>= 1;
	}
	return re;
}//龟速乘

ll exgcd(ll a, ll b, ll &x, ll &y)
{
	if(b == 0) {
		x = 1; y = 0;
		return a;
	}
	ll gcd = exgcd(b, a % b, x, y);
	ll z = x;
	x = y; y = z - y * (a / b);
	return gcd;
}//扩欧

int main()
{
	scanf("%d", &n);
	for(int i = 1; i <= n; ++i)
		scanf("%lld%lld", &a[i], &b[i]);
	ll M = a[1], x = b[1];
	for(int i = 2; i <= n; ++i)
	{
		ll A = M, B = a[i], c = (b[i] - x % B + B) % B;
		ll t = 0, y = 0;
		ll gcd = exgcd(A, B, t, y);//顺带求出gcd(A,B)
		ll bg = B / gcd;//求出通解间隔
		while(t <= 0) t += bg;//使得解是个正整数
		t = mul(t, c / gcd, bg);//龟速乘(因为可能会爆ll)
		x += t * M;
		M *= bg;
	}
	printf("%lld", x);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值