(EX)中国剩余定理 模板


x ≡ a [ 1 ] ( m o d    m [ 1 ] ) x ≡ a[1] (mod\ \ m[1]) xa[1](mod  m[1])
x ≡ a [ 2 ] ( m o d    m [ 2 ] ) x ≡ a[2] (mod\ \ m[2]) xa[2](mod  m[2])
x ≡ a [ 3 ] ( m o d    m [ 3 ] ) x ≡ a[3] (mod\ \ m[3]) xa[3](mod  m[3])
. . . ... ...
x ≡ a [ n ] ( m o d    m [ n ] ) x ≡ a[n] (mod\ \ m[n]) xa[n](mod  m[n])
求x

中国剩余定理 CRT

适用于模数为质数的情况

/*
x ≡ a[1] (mod m[1]) 
x ≡ a[2] (mod m[2]) 
x ≡ a[3] (mod m[3])
...
x ≡ a[n] (mod m[n])
*/
const int maxn = 1e5+5;
int a[maxn], m[maxn], n;
int crt()
{
	int M = 1;
	for(int i=1;;i<=n;++i) M *= m[i]; //求M
	int Mi ,ans = 0, x = 0, y = 0;
	for(int i=1;i<=n;++i)
	{
		Mi = M / m[i];
		exgcd(Mi, m[i], x, y);
		ans = (ans + Mi * a[i] * x) % M;
	}
	return ans;
}

扩展中国剩余定理 EXCRT

适用于模数不为质数的情况 (通用)

const int maxn = 1e5+5;
typedef long long ll;
ll a[maxn], m[maxn];
int n;

ll ksc(ll a, ll b,ll p) //快速乘 
{
	ll ans = 0;
	while(b)
	{
		if(b & 1) ans = (ans + a) % p;
		b >>= 1;
		a = (a + a) % p; 
	}
	return ans;
}

ll exgcd(ll a,ll b, ll& x,ll& y)
{
	if(b == 0)
	{
		x = 1;y = 0;
		return a;
	}
	ll r = exgcd(b, a % b, y ,x);
	y -= a / b * x;
	return r;
}

ll excrt()
{
	ll M = m[1];
	ll ans = a[1];
	ll x = 0,y = 0;
	for(int i=2;i<=n;++i)
	{
		ll d = exgcd(M,m[i],x,y);
		if((a[i] - ans) % d) return -1; //无解
//		x = (a[i] - ans) / d * x % (m[i] / d);
//		优化
		ll c = ((a[i] - ans) % m[i] + m[i]) % m[i]; //保证正数
		x = ksc(x,c/d,m[i]/d);  //使用快速乘, 防溢出

		ans += M * x;
		M = M / d * m[i];
		ans = (ans % M + M) % M; 
	}
	return (ans % M + M) % M;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值