L i n k Link Link
l
u
o
g
u
luogu
luogu
S
P
1805
SP1805
SP1805
P
O
J
POJ
POJ
2559
2559
2559
D e s c r i p t i o n Description Description
如图所示,在一条水平线上有n个宽为1的矩形,求包含于这些矩形的最大子矩形面积(图中的阴影部分的面积即所求答案)
I n p u t Input Input
有多组测试数据,每组数据占一行。输入零时读入结束。
每行开头为一个数字n(1<=n<=100000),接下来在同一行给出n个数字h1h2…hn(0<=hi<=1000000000)表示每个矩形的高度。
O u t p u t Output Output
对于每组数据,输出最大子矩阵面积,一组数据输出一行。
S a m p l e Sample Sample I n p u t Input Input
7 2 1 4 5 1 3 3
4 1000 1000 1000 1000
0
S a m p l e Sample Sample O u t p u t Output Output
8
4000
T r a i n Train Train o f of of T h o u g h t Thought Thought
emmmmm…可以开一个栈,使栈内的数据是单调递增的(开一个单调栈),每次遇到一个高度,若比栈顶高就加入栈,否则计算面积再加入栈
C o d e Code Code
#include<iostream>
#include<cstdio>
using namespace std;
int n;
long long ans,t,s[1000005];
int a[1000005],w[1000005];
int main()
{
int p=0;
scanf("%d",&n);
while (n!=0) {
memset(s,0,sizeof(s));
memset(w,0,sizeof(w));
ans=0;
for (int i=1; i<=n; ++i)
{
scanf("%lld",&t);
int wide=0;
while (s[p]>t) {
wide+=w[p];
ans=max(ans,(long long)wide*s[p]);
--p;
}//求最大面积。。。不可以入栈的情况(因为要保持单调递增)
s[++p]=t;
w[p]=wide+1;
}
int wide=0;
while (p) {
wide+=w[p];
ans=max(ans,(long long)wide*s[p]);
--p;
} //求剩下的
printf("%lld\n",ans);
scanf("%d",&n);
}
}