【单调栈】Largest Rectangle in a Histogram

该博客介绍如何利用单调栈解决寻找给定矩形集合中最大子矩形面积的问题。博主通过举例说明,解释了算法思路,并提供了输入输出样例及代码实现。
摘要由CSDN通过智能技术生成

L i n k Link Link

l u o g u luogu luogu S P 1805 SP1805 SP1805
P O J POJ POJ 2559 2559 2559

D e s c r i p t i o n Description Description

如图所示,在一条水平线上有n个宽为1的矩形,求包含于这些矩形的最大子矩形面积(图中的阴影部分的面积即所求答案)

I n p u t Input Input

有多组测试数据,每组数据占一行。输入零时读入结束。

每行开头为一个数字n(1<=n<=100000),接下来在同一行给出n个数字h1h2…hn(0<=hi<=1000000000)表示每个矩形的高度。

O u t p u t Output Output

对于每组数据,输出最大子矩阵面积,一组数据输出一行。

S a m p l e Sample Sample I n p u t Input Input

7 2 1 4 5 1 3 3
4 1000 1000 1000 1000
0

S a m p l e Sample Sample O u t p u t Output Output

8
4000

T r a i n Train Train o f of of T h o u g h t Thought Thought

emmmmm…可以开一个栈,使栈内的数据是单调递增的(开一个单调栈),每次遇到一个高度,若比栈顶高就加入栈,否则计算面积再加入栈

C o d e Code Code

#include<iostream> 
#include<cstdio>
using namespace std;
int n;
long long ans,t,s[1000005];
int a[1000005],w[1000005];
int main() 
{
	int p=0;
	 scanf("%d",&n);
	 while (n!=0) {
	   memset(s,0,sizeof(s));
	   memset(w,0,sizeof(w)); 
	   ans=0;
	   for (int i=1; i<=n; ++i)
	   {
	   		scanf("%lld",&t);
	 	 	int wide=0;
	 	 	while (s[p]>t) {
	 	 	    wide+=w[p];
	 	 	    ans=max(ans,(long long)wide*s[p]);
	 	        --p;
	 	    }//求最大面积。。。不可以入栈的情况(因为要保持单调递增)
	 	 	s[++p]=t;
			w[p]=wide+1;
	   }
	   int wide=0;
	   while (p) {
	  		wide+=w[p];
	  		ans=max(ans,(long long)wide*s[p]);
	  		--p;
	   } //求剩下的
	   printf("%lld\n",ans);
	   scanf("%d",&n);
	 } 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值